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Motivation:

In a RL problem, there are three important things that we can change

• we can change the state of the agent

• we can change the policy 
• we can change the task or reward function


If we change any of these, we would like to generalize


In this talk we ask, can we handle all three at once?



•Ω - set of observations

• A - set of actions

• S - set of states

Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP) can be 
defined as a tuple ⟨S, A, T , R, Ω, O⟩, where:

[two states:           ]

[two actions:                               ]

[three observations: z1, z2, z3]

• T - S × A → Π (S ) is the state-transition function

• R - S × A→R is the reward function

• O - S × A → Π(Ω) is the observation function

• b - belief state that summarizes previous experiences  

s1 s2

a2 (right)a1 (left)
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POMDP Value Iteration 

1D belief space for a 2 state POMDP
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Vp1

Tony's POMDP Page - Brown University Computer Science
Planning and acting in partially observable stochastic domains Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra 1998

Vt(b) = max
p∈P ∑

s∈S

b(s) ⋅ Vp(s)
Let  be the finite set of all t-step policy trees. ThenP
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POMDP Value Iteration 

Point-based value iteration: An anytime algorithm for POMDPs   Joelle Pineau, Geoff Gordon and Sebastian Thrun 

(point-based value iteration)
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Selects small set of representative belief points bk
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POMDP Value Iteration 
(point-based value iteration)

b1 b2 b3 b4 b5

Selects small set of representative belief points bk

1D belief space for a 2 state POMDP

s1 s2

Pro:
• Generalizes across polices 

Con:
• Does not generalize across tasks/rewards

Point-based value iteration: An anytime algorithm for POMDPs   Joelle Pineau, Geoff Gordon and Sebastian Thrun 

• Generalizes across belief states



(reward function is decoupled from transitions)

• Successor representation learns two quantities 
1. Immediate reward

2. Discount future state occupancy 

• Value function 

r(s) = 𝔼π[rt+1 |st = s]

M(s, s′￼) = 𝔼π[
∞

∑
t=0

γt1(s = s′￼) |s0 = s]

Vπ(s) = ∑
s′￼

M(s, s′￼)r(s′￼)

Improving Generalization for Temporal Difference Learning: The Successor Representation Dayan 1993

Successor Representation



Improving Generalization for Temporal Difference Learning: The Successor Representation Dayan 1993

Successor Representation
(reward function is decoupled from transitions)

• Successor representation learns two quantities 
1. Immediate reward

2. Discount future state occupancy 

• Value function 

r(s) = 𝔼π[rt+1 |st = s]

M(s, s′￼) = 𝔼π[
∞

∑
t=0

γt1(s = s′￼) |s0 = s]

Vπ(s) = ∑
s′￼

M(s, s′￼)r(s′￼)

Pro:
• Generalizes across tasks/rewards

• Generalize across states

• Reward is linear in the successor representation 

matrix 

Con:
• Limited generalization across polices, e.g. via GPI

• The state space in our problems are huge so we 

need to generalize the notion of successor 
representation



(extending successor representations to features)
• Successor Features learns two quantities 

1. Immediate reward

2. Successor Features 

Successor Features

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver
Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio
Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman 

  where   are featuresr(s, a, s′￼) = ϕ(s, a, s′￼)Tw ϕ(s, a, s′￼) ∈ ℝd

Qπ(s, a) = ψπ(s, a)Tw

ψπ(s, a) = 𝔼π [
∞

∑
i=t

γi−tϕi+1 ∣ St = s, At = a]
Action-Value Function:



(extending successor representations to features)
• Successor Features learns two quantities 

1. Immediate reward

2. Expected Discount sum of features i.e. Successor Features 

Successor Features

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver
Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio
Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman 

  where   are featuresr(s, a, s′￼) = ϕ(s, a, s′￼)Tw ϕ(s, a, s′￼) ∈ ℝd

Qπ(s, a) = ψπ(s, a)Tw

ψπ(s, a) = 𝔼π [
∞

∑
i=t

γi−tϕi+1 ∣ St = s, At = a]
Action-Value Function:

Pro:
• Generalizes across tasks/rewards

• Generalizes across states

• Extends successors representation beyond the 

tabular setting

Con:
• Limited generalization across polices, e.g., via GPI



(pictorial example)

Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio

Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman 

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver

Successor Features



Predictive State Representations
(generalize POMDPs)
Changes the interpretation of the belief state:

Belief states no longer represent probability distribution over states,

but instead satisfies two properties 

Given starting state , transition matrices , and 

a vector 

q1 Tao
u ∈ ℝk

The two properties are: 
1. 

2. 

(∀a, o, t)uTTaoqt ≥ 0
(∀a, t)∑

o

uTTaoqt = 1



Predictive State Representations
(generalize POMDPs)
Changes the interpretation of the belief state:

Belief states no longer represent probability distribution over states,

but instead satisfies two properties 

Given starting state , transition matrices , and 

a vector 

q1 Tao
u ∈ ℝk

The two properties are: 
1. 

2. 

(∀a, o, t)uTTaoqt ≥ 0
(∀a, t)∑

o

uTTaoqt = 1

Pro:
• Generalizes across states

• Generalize across polices 

• Transitions and rewards are linear in the state 

vector  and the value is piecewise linearqt

Con:
• Does not generalize across rewards

• Learning PSRs is challenging 



Our Contributions: Successor Feature Sets

For any control problem, we can write down 
• a convex set of possible state representations q,

• a convex set of reward function representations r, and 

• a convex set of policy representations π, 

such that these representations are embeddings in a vector space  and the value of 
policy π under reward r at initial state q is a (simple) multilinear function of r, π, and q. 



Our Contributions: Successor Feature Sets

For any control problem, we can write down 
• a convex set of possible state representations q,

• a convex set of reward function representations r, and 

• a convex set of policy representations π, 

such that these representations are embeddings in a vector space  and the value of 
policy π under reward r at initial state q is a (simple) multilinear function of r, π, and q. 

Note:
Given the embeddings, there are efficient algorithms to read off 


• an optimal policy under a given reward function

• a policy that imitates a given set of demonstrations 
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Changes the interpretation of the belief state:
Belief states no longer represent probability distribution over states,

but instead satisfies two properties 

Given starting state , transition matrices , and 

a vector 

q1 Tao
u ∈ ℝk

The two properties are: 
1. 

2. 

(∀a, o, t)uTTaoqt ≥ 0
(∀a, t)∑

o

uTTaoqt = 1

How do we embed states?
(using Predictive states)

Represent state as a vector of predictions about 
the future 


For example,


test #1: Probability       if you go left ?


test #2: Probability       if you go right ?


This is more general than belief states.



How do we embed rewards?
(using Successor Features)

Action-Value Function: 

Qπ(q, a) = 𝔼π [
H

∑
t=1

γt−1r(qt, at) |do q1 = q, a1 = a]
Falls apart when the reward function changes 



How do we embed rewards?
(using Successor Features)

Suppose our reward function is defined by state-action features:                             for 
some vector  and feature function  which is linear in  for each r f q a

r(q, a) = rTf(q, a)

Let f(q, a) = Faq Then Qπ(q) = 𝔼π [
H

∑
t=1

γt−1rTFat
qt |do q1 = q, a1 = a]

Pulling out rT

Qπ(q) = rTϕπ(q) ϕπ(q) = 𝔼π [
H

∑
t=1

γt−1Fat
qt ∣ do q1 = q, a1 = a]and 



How do we embed rewards?
(using Successor Features)

ϕπ(q) = 𝔼π [
H

∑
t=1

γt−1Fat
qt ∣ do q1 = q, a1 = a]Successor feature vector - 

They allow us to compute state-values for  under any reward function.π

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver

Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio

Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman 

ϕπ(qt) = 𝔼π[ f(qt, at) + γϕπ(at,ot)(qt+1)]

ϕπ(qt) = ∑
a,o

P(a ∣ π)P(o ∣ qt, do a)[Faqt + γϕπ(a,o)(qt+1)]

Let f(q, a) = Faq



Combining Everything
(Successor Feature, PSR, POMDP Value Iteration)

We now have all we need to write value as a multilinear function of state, reward, and 
policy. As a reminder, 


• Our state  represents a linear combination of some fixed initial test states. 


• Our reward  represents a linear combination of some features of our current state 
and action.


• Our policy embedding  tells us how successor features depend on initial state.


Given these quantities our state-value is now


•

q
r

Φ

V = rTϕq ∣ ϕ ∈ Φ



How do we embed policies?
(using POMDP value iteration ideas)

The function  is linear in , meaning there exists a matrix  such 
that 

ϕπ q Aπ ∈ ℝdxk

ϕπ(q) = Aπq

Successor feature matrix - Aπ = Fa + γ∑
o

Aπ(o)Tao

ϕπ(qt) = ∑
a,o

P(a ∣ π)P(o ∣ qt, do a)[Faqt + γϕπ(a,o)(qt+1)]

ϕπ(qt) = ∑
a

P(a ∣ π)[Faqt + γ∑
o

Aπ(a,o)Taoqt]
Aπ = ∑

a

P(a ∣ π)[Fa + γ∑
o

Aπ(a,o)Tao]



How do we embed policies?
(using POMDP value iteration ideas)

[Main new contribution]: Successor Feature Sets

Φ(H) = {Aπ ∣ π a policy with horizon H}

Φ(H)
a = Fa + γ∑

o

Φ(H−1)Tao

Φ(H) = conv⋃
a

Φ(H)
a

Aπ = Fa + γ∑
o

Aπ(o)Tao

Implementation Detail: Let  be a fix a set of directions thenmi ∈ ℝd×k

Set satisfies Bellman Equations 

ΦH ≈ arg max ⟨mi, ϕ⟩ for ϕ ∈ ⋃a′￼[Fa′￼
+ γ∑o′￼

Φa′￼o′￼] Tao



Imitation Learning by feature Matching
(optimal planning)

• Given demonstration from a behavior policy

• Compute expected discounted features 

• We want to find a policy in our successor feature set that matches the behavior 
policy

s0, a0, a1, s1, s2, a2, …

f(s0, a0) + γ1 f(s1, a1) + γ2 f(s2, a2) + …

𝔼π [f(s0, a0) + γ1 f(s1, a1) + γ2 f(s2, a2) + …] = ϕd



Experiment Details:

We looked at scaling behavior in three simple environments:


• MDP:  
• deterministic 18 × 18 gridworld


• Mountain-Car: 
• finite-element discretization of the standard mountain-car benchmark 


• POMDP: 
• partially observable 18 x 18 gridworld (where transition dynamics and state 

observations are both slightly noisy)

(testing our planning)



Experiment Results:



Conclusion:

We showed for any control problem, we can write down
• a convex set of possible state representations q,

• a convex set of reward function representations r, and 

• a convex set of policy representations π, 

such that these representations are embeddings in a vector space


We evaluated out embedding on three task



Thank you


