
Successor Feature Sets: Generalizing
Successor Representations Across Policies

Kianté Brantley,1 Soroush Mehri,2 and Geoff Gordon2
1 University of Maryland, 2 Microsoft Research

Motivation:

In a RL problem, there are three important things that we can change

• we can change the state of the agent

• we can change the policy
• we can change the task or reward function

If we change any of these, we would like to generalize

In this talk we ask, can we handle all three at once?

•Ω - set of observations

• A - set of actions

• S - set of states

Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP) can be
defined as a tuple ⟨S, A, T , R, Ω, O⟩, where:

[two states:]

[two actions:]

[three observations: z1, z2, z3]

• T - S × A → Π (S) is the state-transition function

• R - S × A→R is the reward function

• O - S × A → Π(Ω) is the observation function

• b - belief state that summarizes previous experiences

s1 s2

a2 (right)a1 (left)

(1-x)(x)

POMDP Value Iteration

1D belief space for a 2 state POMDP

s1 s2

Vp1

Tony's POMDP Page - Brown University Computer Science
Planning and acting in partially observable stochastic domains Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra 1998

Vt(b) = max
p∈P ∑

s∈S

b(s) ⋅ Vp(s)
Let be the finite set of all t-step policy trees. ThenP

Vp2

Vp3Vp4

Vp5

Vp…

POMDP Value Iteration

Point-based value iteration: An anytime algorithm for POMDPs Joelle Pineau, Geoff Gordon and Sebastian Thrun

(point-based value iteration)

b1 b2 b3 b4 b5

Selects small set of representative belief points bk

1D belief space for a 2 state POMDP

s1 s2

POMDP Value Iteration
(point-based value iteration)

b1 b2 b3 b4 b5

Selects small set of representative belief points bk

1D belief space for a 2 state POMDP

s1 s2

Pro:
• Generalizes across polices

Con:
• Does not generalize across tasks/rewards

Point-based value iteration: An anytime algorithm for POMDPs Joelle Pineau, Geoff Gordon and Sebastian Thrun

• Generalizes across belief states

(reward function is decoupled from transitions)

• Successor representation learns two quantities
1. Immediate reward

2. Discount future state occupancy

• Value function

r(s) = 𝔼π[rt+1 |st = s]

M(s, s′￼) = 𝔼π[
∞

∑
t=0

γt1(s = s′￼) |s0 = s]

Vπ(s) = ∑
s′￼

M(s, s′￼)r(s′￼)

Improving Generalization for Temporal Difference Learning: The Successor Representation Dayan 1993

Successor Representation

Improving Generalization for Temporal Difference Learning: The Successor Representation Dayan 1993

Successor Representation
(reward function is decoupled from transitions)

• Successor representation learns two quantities
1. Immediate reward

2. Discount future state occupancy

• Value function

r(s) = 𝔼π[rt+1 |st = s]

M(s, s′￼) = 𝔼π[
∞

∑
t=0

γt1(s = s′￼) |s0 = s]

Vπ(s) = ∑
s′￼

M(s, s′￼)r(s′￼)

Pro:
• Generalizes across tasks/rewards

• Generalize across states

• Reward is linear in the successor representation

matrix

Con:
• Limited generalization across polices, e.g. via GPI

• The state space in our problems are huge so we

need to generalize the notion of successor
representation

(extending successor representations to features)
• Successor Features learns two quantities

1. Immediate reward

2. Successor Features

Successor Features

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver
Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio
Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman

 where are featuresr(s, a, s′￼) = ϕ(s, a, s′￼)Tw ϕ(s, a, s′￼) ∈ ℝd

Qπ(s, a) = ψπ(s, a)Tw

ψπ(s, a) = 𝔼π [
∞

∑
i=t

γi−tϕi+1 ∣ St = s, At = a]
Action-Value Function:

(extending successor representations to features)
• Successor Features learns two quantities

1. Immediate reward

2. Expected Discount sum of features i.e. Successor Features

Successor Features

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver
Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio
Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman

 where are featuresr(s, a, s′￼) = ϕ(s, a, s′￼)Tw ϕ(s, a, s′￼) ∈ ℝd

Qπ(s, a) = ψπ(s, a)Tw

ψπ(s, a) = 𝔼π [
∞

∑
i=t

γi−tϕi+1 ∣ St = s, At = a]
Action-Value Function:

Pro:
• Generalizes across tasks/rewards

• Generalizes across states

• Extends successors representation beyond the

tabular setting

Con:
• Limited generalization across polices, e.g., via GPI

(pictorial example)

Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio

Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver

Successor Features

Predictive State Representations
(generalize POMDPs)
Changes the interpretation of the belief state:

Belief states no longer represent probability distribution over states,

but instead satisfies two properties

Given starting state , transition matrices , and

a vector

q1 Tao
u ∈ ℝk

The two properties are:
1.

2.

(∀a, o, t)uTTaoqt ≥ 0
(∀a, t)∑

o

uTTaoqt = 1

Predictive State Representations
(generalize POMDPs)
Changes the interpretation of the belief state:

Belief states no longer represent probability distribution over states,

but instead satisfies two properties

Given starting state , transition matrices , and

a vector

q1 Tao
u ∈ ℝk

The two properties are:
1.

2.

(∀a, o, t)uTTaoqt ≥ 0
(∀a, t)∑

o

uTTaoqt = 1

Pro:
• Generalizes across states

• Generalize across polices

• Transitions and rewards are linear in the state

vector and the value is piecewise linearqt

Con:
• Does not generalize across rewards

• Learning PSRs is challenging

Our Contributions: Successor Feature Sets

For any control problem, we can write down
• a convex set of possible state representations q,

• a convex set of reward function representations r, and

• a convex set of policy representations π,

such that these representations are embeddings in a vector space and the value of
policy π under reward r at initial state q is a (simple) multilinear function of r, π, and q.

Our Contributions: Successor Feature Sets

For any control problem, we can write down
• a convex set of possible state representations q,

• a convex set of reward function representations r, and

• a convex set of policy representations π,

such that these representations are embeddings in a vector space and the value of
policy π under reward r at initial state q is a (simple) multilinear function of r, π, and q.

Note:
Given the embeddings, there are efficient algorithms to read off

• an optimal policy under a given reward function

• a policy that imitates a given set of demonstrations

Changes the interpretation of the belief state:
Belief states no longer represent probability distribution over states,

but instead satisfies two properties

Given starting state , transition matrices , and

a vector

q1 Tao
u ∈ ℝk

The two properties are:
1.

2.

(∀a, o, t)uTTaoqt ≥ 0
(∀a, t)∑

o

uTTaoqt = 1

How do we embed states?
(using Predictive states)

Changes the interpretation of the belief state:
Belief states no longer represent probability distribution over states,

but instead satisfies two properties

Given starting state , transition matrices , and

a vector

q1 Tao
u ∈ ℝk

The two properties are:
1.

2.

(∀a, o, t)uTTaoqt ≥ 0
(∀a, t)∑

o

uTTaoqt = 1

How do we embed states?
(using Predictive states)

Represent state as a vector of predictions about
the future

For example,

test #1: Probability if you go left ?

test #2: Probability if you go right ?

This is more general than belief states.

How do we embed rewards?
(using Successor Features)

Action-Value Function:

Qπ(q, a) = 𝔼π [
H

∑
t=1

γt−1r(qt, at) |do q1 = q, a1 = a]
Falls apart when the reward function changes

How do we embed rewards?
(using Successor Features)

Suppose our reward function is defined by state-action features: for
some vector and feature function which is linear in for each r f q a

r(q, a) = rTf(q, a)

Let f(q, a) = Faq Then Qπ(q) = 𝔼π [
H

∑
t=1

γt−1rTFat
qt |do q1 = q, a1 = a]

Pulling out rT

Qπ(q) = rTϕπ(q) ϕπ(q) = 𝔼π [
H

∑
t=1

γt−1Fat
qt ∣ do q1 = q, a1 = a]and

How do we embed rewards?
(using Successor Features)

ϕπ(q) = 𝔼π [
H

∑
t=1

γt−1Fat
qt ∣ do q1 = q, a1 = a]Successor feature vector -

They allow us to compute state-values for under any reward function.π

Successor Features for Transfer in Reinforcement Learning André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, David Silver

Universal Successor Features for Transfer Reinforcement Learning Chen Ma, Dylan R. Ashley, Junfeng Wen, Yoshua Bengio

Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning Lucas Lehnert, Michael L. Littman

ϕπ(qt) = 𝔼π[f(qt, at) + γϕπ(at,ot)(qt+1)]

ϕπ(qt) = ∑
a,o

P(a ∣ π)P(o ∣ qt, do a)[Faqt + γϕπ(a,o)(qt+1)]

Let f(q, a) = Faq

Combining Everything
(Successor Feature, PSR, POMDP Value Iteration)

We now have all we need to write value as a multilinear function of state, reward, and
policy. As a reminder,

• Our state represents a linear combination of some fixed initial test states.

• Our reward represents a linear combination of some features of our current state
and action.

• Our policy embedding tells us how successor features depend on initial state.

Given these quantities our state-value is now

•

q
r

Φ

V = rTϕq ∣ ϕ ∈ Φ

How do we embed policies?
(using POMDP value iteration ideas)

The function is linear in , meaning there exists a matrix such
that

ϕπ q Aπ ∈ ℝdxk

ϕπ(q) = Aπq

Successor feature matrix - Aπ = Fa + γ∑
o

Aπ(o)Tao

ϕπ(qt) = ∑
a,o

P(a ∣ π)P(o ∣ qt, do a)[Faqt + γϕπ(a,o)(qt+1)]

ϕπ(qt) = ∑
a

P(a ∣ π)[Faqt + γ∑
o

Aπ(a,o)Taoqt]
Aπ = ∑

a

P(a ∣ π)[Fa + γ∑
o

Aπ(a,o)Tao]

How do we embed policies?
(using POMDP value iteration ideas)

[Main new contribution]: Successor Feature Sets

Φ(H) = {Aπ ∣ π a policy with horizon H}

Φ(H)
a = Fa + γ∑

o

Φ(H−1)Tao

Φ(H) = conv⋃
a

Φ(H)
a

Aπ = Fa + γ∑
o

Aπ(o)Tao

Implementation Detail: Let be a fix a set of directions thenmi ∈ ℝd×k

Set satisfies Bellman Equations

ΦH ≈ arg max ⟨mi, ϕ⟩ for ϕ ∈ ⋃a′￼[Fa′￼
+ γ∑o′￼

Φa′￼o′￼] Tao

Imitation Learning by feature Matching
(optimal planning)

• Given demonstration from a behavior policy

• Compute expected discounted features

• We want to find a policy in our successor feature set that matches the behavior
policy

s0, a0, a1, s1, s2, a2, …

f(s0, a0) + γ1 f(s1, a1) + γ2 f(s2, a2) + …

𝔼π [f(s0, a0) + γ1 f(s1, a1) + γ2 f(s2, a2) + …] = ϕd

Experiment Details:

We looked at scaling behavior in three simple environments:

• MDP:
• deterministic 18 × 18 gridworld

• Mountain-Car:
• finite-element discretization of the standard mountain-car benchmark

• POMDP:
• partially observable 18 x 18 gridworld (where transition dynamics and state

observations are both slightly noisy)

(testing our planning)

Experiment Results:

Conclusion:

We showed for any control problem, we can write down
• a convex set of possible state representations q,

• a convex set of reward function representations r, and

• a convex set of policy representations π,

such that these representations are embeddings in a vector space

We evaluated out embedding on three task

Thank you

