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Contributions

For any control problem, we define three sets of
embeddings
• a convex set of possible state vectors q
• a convex set of reward function representations r
• a convex set of policy embedding vectors π

such that the value of a policy is a (simple)
multilinear function of r, π, and q.

Using these embeddings we get the "best of all
worlds" from well-understood ideas:
• predictive state representations (PSRs) (generalize

over states)
• successor features (generalize over tasks or rewards)
• POMDP value iteration (generalize over polices)

New Dynamic Programming method
• "Bellman-like" consistency equation is a contraction
• generalizes the value iteration algorithm for POMDPs

or PSRs
• once computed, embeddings can be used for either

planning or imitation
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For example, POMDP: Tiger Problem

Pt(o) = TTtoqt
qt+1 = Ttotqt/Pt(ot)
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Belief state qt and update (*) satisfy:

1.∀, o, t : TToqt ≥ 0

2.∀, t :
∑

o

TToqt = 1

Our approach: Successor Feature Sets

• How do we embed states? Predictive states
We can use a PSR directly or convert an MDP or POMDP
like Tiger to a PSR. Whenever the state update satisfies
(*) the state vector is compatible with our task and pol-
icy embeddings.

• How do we embed rewards? Successor features
Reward: r(q, ) = rT ƒ (q, ) for some vector r and fea-
ture function ƒ . Suppose wlog that ƒ is linear in q for
each : for matrices F, ƒ (q, ) = Fq. Then we can
write the state-action value function as:

Q(q, ) = Eπ
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We can pull out rT and write as Qπ(q, ) = rTϕπ(q, ),
where the successor feature function ϕ is defined as:

ϕπ(q, ) = Eπ
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• [New Idea]: How do we embed policies?
The successor feature vector ϕπ(q, ) is linear in q so
there exists a matrix Aπ such ϕπ = Aπq. These succes-
sor feature matrices satisfy a dynamic programming
equation:

Aπ = F + γ
∑

o

Aπ(o)To

(π(o) = how the policy π continues on step t + 1 after seeing o)

Define the Successor Feature Sets as:

(H) = {Aπ | π a policy with horizon H}

which satisfies Bellman equations
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∑

o
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(H) = conv
⋃
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Corresponding update is a contraction and converges
to a unique fixed point.

• Given the above embeddings, the value of any pol-
icy π for any task r starting from any state q is rTπq.

Successor feature set example

Projections of successor feature sets for 3x3 grid MDP.
Red outlines illustrate a step of dynamic programming.

Experiments
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Grid POMDP

We show error separately in directions we have optimized over and
in new random directions. Left: The Mountain-car domain. Right:
Random 18 × 18 POMDP gridworld where actions and observations
are noisy.
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Comparing Successor Feature Sets, value iteration and General Policy
Improvement. We see that Successor Feature Sets improves over both
baselines.


