
Successor Feature Sets: Generalizing Successor Representations Across Policies
Kianté Brantley1,Soroush Mehri2, Geoffrey J. Gordon2

1University of Maryland College Park, 2Microsoft Research

Contributions

For any control problem, we define three sets of
embeddings
• a convex set of possible state vectors q
• a convex set of reward function representations r
• a convex set of policy embedding vectors π

such that the value of a policy is a (simple)
multilinear function of r, π, and q.

Using these embeddings we get the "best of all
worlds" from well-understood ideas:
• predictive state representations (PSRs) (generalize

over states)
• successor features (generalize over tasks or rewards)
• POMDP value iteration (generalize over polices)

New Dynamic Programming method
• "Bellman-like" consistency equation is a contraction
• generalizes the value iteration algorithm for POMDPs

or PSRs
• once computed, embeddings can be used for either

planning or imitation

Background

World Model: state qt
ct t
=⇒ Pt

ctl
=⇒
obs ot

qt+1

(Pt predicted observation probabilies)

For example, POMDP: Tiger Problem

Pt(o) = TTtoqt
qt+1 = Ttotqt/Pt(ot)

(*)

q1 =

1/2
1/2
0

!

, =

1
1
1

!

, TWℓ =

1
2 + ε 0 0
0 1

2 − ε 0
0 0 0

 TWr =

1
2 − ε 0 0
0 1

2 + ε 0
0 0 0

,

TLℓ = TRℓ =

0 0 0
0 0 0
1 0 0

!

, TLr = TRr =

0 0 0
0 0 0
0 1 0

!

, TLω = TRω = TWω

0 0 0
0 0 0
0 0 1

!

Belief state qt and update (*) satisfy:

1.∀, o, t : TToqt ≥ 0

2.∀, t :
∑

o

TToqt = 1

Our approach: Successor Feature Sets

• How do we embed states? Predictive states
We can use a PSR directly or convert an MDP or POMDP
like Tiger to a PSR. Whenever the state update satisfies
(*) the state vector is compatible with our task and pol-
icy embeddings.

• How do we embed rewards? Successor features
Reward: r(q,) = rT ƒ (q,) for some vector r and fea-
ture function ƒ . Suppose wlog that ƒ is linear in q for
each : for matrices F, ƒ (q,) = Fq. Then we can
write the state-action value function as:

Q(q,) = Eπ

H
∑

t=1

γt−1rTFtqt | do q1 = q, 1 =

We can pull out rT and write as Qπ(q,) = rTϕπ(q,),
where the successor feature function ϕ is defined as:

ϕπ(q,) = Eπ

H
∑

t=1

γt−1Ftqt | do q1 = q, 1 =

• [New Idea]: How do we embed policies?
The successor feature vector ϕπ(q,) is linear in q so
there exists a matrix Aπ such ϕπ = Aπq. These succes-
sor feature matrices satisfy a dynamic programming
equation:

Aπ = F + γ
∑

o

Aπ(o)To

(π(o) = how the policy π continues on step t + 1 after seeing o)

Define the Successor Feature Sets as:

(H) = {Aπ | π a policy with horizon H}

which satisfies Bellman equations

(H)

= F + γ

∑

o

(H−1)To

(H) = conv
⋃

(H)

Corresponding update is a contraction and converges
to a unique fixed point.

• Given the above embeddings, the value of any pol-
icy π for any task r starting from any state q is rTπq.

Successor feature set example

Projections of successor feature sets for 3x3 grid MDP.
Red outlines illustrate a step of dynamic programming.

Experiments

0 25 50 75 100
number of updates

0.0

0.5

1.0

1.5

2.0

2.5

Be
llm

an
 e

rro
r

Mountain-Car
optimized directions, size 50
new directions, size 50
optimized directions, size 100
new directions, size 100
optimized directions, size 175
new directions, size 175

0 25 50 75 100
number of updates

0.00

0.25

0.50

0.75

1.00

1.25

Be
llm

an
 e

rro
r

Grid POMDP

We show error separately in directions we have optimized over and
in new random directions. Left: The Mountain-car domain. Right:
Random 18 × 18 POMDP gridworld where actions and observations
are noisy.

0 20 40 60
time in minutes

10 2

100

102

Be
llm

an
 e

rro
r

Mountain-Car (30 task)
VI-POMDP
Successor-Feature Sets

0 20 40 60
time in minutes

10 7

10 5

10 3

10 1

101

Be
llm

an
 e

rro
r

Mountain-Car (transfer learning 30 new task)

VI-POMDP
Generalized Policy Improvement
Successor-Feature Sets

Comparing Successor Feature Sets, value iteration and General Policy
Improvement. We see that Successor Feature Sets improves over both
baselines.

