Successor Feature Sets: Generalizing Successor Representations Across Policies
 Kianté Brantley ${ }^{1}$,Soroush Mehri², Geoffrey J. Gordon ${ }^{2}$
 ${ }^{1}$ University of Maryland College Park, ${ }^{2}$ Microsoft Research

Contributions

For any control problem, we define three sets of embeddings

- a convex set of possible state vectors q
- a convex set of reward function representations r
- a convex set of policy embedding vectors π
such that the value of a policy is a (simple)
multilinear function of r, π, and q.
Using these embeddings we get the "best of all worlds" from well-understood ideas:
- predictive state representations (PSRs) (generalize over states)
- successor features (generalize over tasks or rewards)
- POMDP value iteration (generalize over polices)

New Dynamic Programming method

- "Bellman-like" consistency equation is a contraction
- generalizes the value iteration algorithm for POMDPS or PSRs
- once computed, embeddings can be used for either planning or imitation

Background

World Model: state $q_{t} \stackrel{\text { act } a_{t}}{\Longrightarrow} P_{t} \stackrel{\text { obs } o_{t}}{\text { actual }} q_{t+1}$ (P_{t} predicted observation probabilies)

For example, POMDP: Tiger Problem

$$
\begin{aligned}
& P_{t}(o)=u^{T} T_{a_{t} o} q_{t} \\
& q_{t+1}=T_{a_{t} o_{t}} q_{t} / P_{t}\left(o_{t}\right)
\end{aligned}
$$

$q_{1}=\left(\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0\end{array}\right), u=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), T_{w l}=\left(\begin{array}{ccc}\frac{1}{2}+\epsilon & 0 & 0 \\ 0 & \frac{1}{2}-\epsilon & 0 \\ 0 & 0 & 0\end{array}\right) T_{w r}=\left(\begin{array}{ccc}\frac{1}{2}-\epsilon & 0 & 0 \\ 0 & \frac{1}{2}+\epsilon & 0 \\ 0 & 0 & 0\end{array}\right)$, $T_{L \ell}=T_{R l}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right), T_{L r}=T_{R r}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), T_{L \omega}=T_{R \omega}=T_{W \omega}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$

Belief state q_{t} and update (*) satisfy:

$$
\begin{aligned}
& \text { 1. } \forall a, o, t: u^{T} T_{a o} q_{t} \geq 0 \\
& \text { 2. } \forall a, t: \sum_{o} u^{T} T_{a o} q_{t}=1
\end{aligned}
$$

Our approach: Successor Feature Sets

- How do we embed states? Predictive states We can use a PSR directly or convert an MDP or POMDP like Tiger to a PSR. Whenever the state update satisfies ${ }^{(*)}$ the state vector is compatible with our task and policy embeddings.
- How do we embed rewards? Successor features Reward: $r(q, a)=r^{T} f(q, a)$ for some vector r and feature function f. Suppose wlog that f is linear in q for each a : for matrices $F_{a}, f(q, a)=F_{a} q$. Then we can write the state-action value function as:

$$
Q(q, a)=\mathbb{E}_{\pi}\left[\sum_{t=1}^{H} r^{t-1} r^{T} F_{a_{t}} q_{t} \mid \text { do } q_{1}=q, a_{1}=a\right]
$$

We can pull out r^{T} and write as $Q^{\pi}(q, a)=r^{T} \phi^{\pi}(q, a)$, where the successor feature function ϕ is defined as:

$$
\phi^{\pi}(q, a)=\mathbb{E}_{\pi}\left[\sum_{t=1}^{H} \gamma^{t-1} F_{a_{t}} q_{t} \mid \text { do } q_{1}=q, a_{1}=a\right]
$$

- [New Idea]: How do we embed policies?

The successor feature vector $\phi^{\pi}(q, a)$ is linear in q so there exists a matrix A^{π} such $\phi^{\pi}=A^{\pi} q$. These successor feature matrices satisfy a dynamic programming equation:

$$
A^{\pi}=F_{a}+\gamma \sum_{o} A^{\pi(o)} T_{a o}
$$

$(\pi(0)=$ how the policy π continues on step $t+1$ after seeing 0$)$
Define the Successor Feature Sets as:

$$
\Phi^{(H)}=\left\{A^{\pi} \mid \pi \text { a policy with horizon } H\right\}
$$

which satisfies Bellman equations

$$
\begin{aligned}
& \Phi_{a}^{(H)}=F_{a}+\gamma \sum_{o} \Phi^{(H-1)} T_{a o} \\
& \Phi^{(H)}=\operatorname{conv} \bigcup_{a} \Phi_{a}^{(H)}
\end{aligned}
$$

Corresponding update is a contraction and converges to a unique fixed point.

- Given the above embeddings, the value of any policy π for any task r starting from any state q is $r^{\top} \pi q$.

Successor feature set example

Projections of successor feature sets for 3×3 grid MDP. Red outlines illustrate a step of dynamic programming.

Experiments

We show error separately in directions we have optimized over and in new random directions. Left: The Mountain-car domain. Right: Random 18×18 POMDP gridworld where actions and observations are noisy.

Comparing Successor Feature Sets, value iteration and General Policy Improvement. We see that Successor Feature Sets improves over both baselines

