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Imitation Learning

(Annotator)

Named Entity Recognition
Input: After completing his Ph.D. , Ellis worked at Bell Labs from 1969 to 1972 on probability theory..

Prediction: | ©

combine input with previous prediction x
O, per, org, misc, loc

D = {(state, actions)} from expert *

learn agent 7y(s) -> a



Imitation Learning using DAgger

Initialize Dataset D
Initialize 7, Named Entity Recognition
for i1=1 to N dc pleting his Ph.D., Ellis worke
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Sample T-step tre
cRGEIEE oA ] The policy is able to learn from its own
Aggregate datas¢ il distribution.

Train classifier 78

Stéephane Ross, Geoff J. Gordon, and J. Andrew Bag- nell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.



Imitation Learning using DAgger

Initialize Dataset D

Initialize 7, ity Recognition
for i1=1 to
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Sample T-¢

fter completing his Ph.D., Ellis worke
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for the optimal action. 0 0 O O OPER O

Aggregate

Train classifier 7;.; on D

Stéephane Ross, Geoff J. Gordon, and J. Andrew Bag- nell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.



Active Learning

The learner queries the expert for labels — only when it is uncertain

foreachtrial t = 1,2,...
observe instance *X; € !

set ﬁz — ﬂg(ytl \xt) — ﬂe(ytz \ xt) (Margin between the most likely and the second most likely labels)
predict with y, = argmax(z,) .

draw a Bernoulli variable Z of parameter —— (Confidence parameter )
: B b+ |p;
if Z =1

query label )Y: and perform update

[T. Scheffer, C. Decomain, and S. Wrobel. Active hidden Markov models for information extraction. Proceedings of the International Conference on Advances in Intelligent
Data Analysis (CAIDA), 2001.]

[Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. 2006. Worst-case analysis ofselective sampling for linear classification. JMLR.]



Leveraging Active Learning

The learner queries the expert for labels — only when it is uncertain

foreachtrial =12,.. Confidence parameter: b
observe instance *; € | Obig - the probability of requesting a label
A 1 _ 2 )
set P, = EH(X ! ‘xf) 71'(9()7 ! ‘xf) (Margin Osmall - the probability of requesting a label
predict with Y, = argmax(z,)
draw a Bernoulli variable / of parameter b+ (. (Confidence parameter p)
it 7 = 1 Pr

query label )Y: and perform update

[T. Scheffer, C. Decomain, and S. Wrobel. Active hidden Markov models for information extraction. Proceedings of the International Conference on Advances in Intelligent
Data Analysis (CAIDA), 2001.]

[Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zaniboni. 2006. Worst-case analysis ofselective sampling for linear classification. JMLR.]



Active Learning with DAgger

Initialize Dataset D

Initialize 77 "
. gJnition

fori =1 to N do - . -
T = ﬁl.yz* + (1 — ﬁi)yj QueStlon - eting his Ph.D., Ellis worke
Sample T-step trajectc r1Can reduce even further? O O O OPER O

forr=1to T
set P, = ”Q(Ytl K
draw Bernoulli variapnple 2, ot parameter b+|p,|
if Z =1
Get dataset D, = {(s,, 7*(s,)) }
Aggregate dataset D <~ DU D,

Train classifier 7Z;,; on D



Our Approach:
(Learning to Query for Imitation)

Key Ideas: - WWe assume access 1o a

- Use a to decide if we should
query the expert or the heuristic function

- Train the disagreement classifier using the Apple
Tasting framework




le Tasting Framework

Apg

he-Side Feedback Problem
Learner
Goal avoid avoid
Problem
Learner
Learner
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One-Sided Feedback Learning

Heuristic Function

Named Entity Recognition| ©Noisy, bias and cheap

Input: After completing his
JU
HeGegtttdamction 0 0

LeaQl One-Side Feedback Problem

OLearn to predict when a
Heuristic and Expert disagree

O only gets feedback when it
predicts disagree and we query the expert

O does not get feedback when
it predicts agree and we query the heuristic
function



n:-r:-1e]

draw Bernoulli variable Z, of parameter X +b\ﬁt\ Name Entitv B -
if Z =1 y Recognition
jl. — hi(S) Set difference classifier Input: After completing his Ph.D. , Ellis work
If AppleTaste(s , 7"(s), cfl- ) ﬂl
Aggregate dataset D < D U {(s, 7(s))} Gazetteer:
else

*

T

Train classifier 7;,; on D Difference Classifier: v

Aggregate dataset D <— D U {(s, 7*(s))}
Aggregate dataset § — S U {(s, ﬂh(S), d,d)}

Train difference classifier /., on ¢



} Experiment Details

Language English English Modern Greek

Dataset CoNLL'03 SemEval 2017 Universal
Task 10 Dependencies

Heuristic Gazeteer Unsupervised Dictionary
model Wiktionary

Huer. Quality P88%, R27% P20%, R44% 67% acc




Q1 } Experiment Results

Active vs Passive

Heuristic as features vs Policy

Q3

Difference Classifier Efficacy

Q4

Apple Tasting Efficacy

Robustness to Poor a Heuristic
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We showed that the Apple Tasting framework has practical
benefits

=V

We showed a relationship between using a heuristic function
and One-side feedback learning

N/
. We introduced a new algorithm and evaluated it on 3 task



Thank you!




