Disagreement-Regularized Imitation Learning

Kianté Brantley¹, Wen Sun², Mikael Henaff²

¹University of Maryland, ²Microsoft Research

Main ideas

Using disagreement among an ensemble of pre-trained polices to reduce the *compounding error* problem in Imitation Learning

We seek an algorithmic scheme that:

- mimics the expert within its distribution
- returns to the expert's distribution if it deviates

Our approach:

- uses ensemble uncertainty as reward function
- can use any policy gradient algorithm
- has linear regret in certain settings
- simple and practically robust

Compounding error problem

Behavior cloning treats imitation learning as a supervised learning problem.

$$J_{\text{BC}}(\pi) = \mathbb{E}_{s \sim d_{\pi^*}} [\|\pi^*(\cdot|s) - \pi(\cdot|s)\|]$$
(d_{π^*} is computed from demonstration data)

But doing this the model may suffer from the *cascading error problem*

this can be formalized with the *quadratic regret bound* where there exist problems when

$$J_{\rm BC}(\pi) = \epsilon$$
 and Regret = $\Omega(\epsilon T^2)$
(Ross and Bagnell, AISTATS 2010)

Our approach:

Our objective has two parts

$$J_{\text{alg}}(\pi) = \underbrace{\mathbb{E}_{s \sim d_{\pi^*}}[\|\pi^*(\cdot|s) - \pi(\cdot|s)\|]}_{J_{\text{BC}}(\pi)} + \underbrace{\mathbb{E}_{s \sim d_{\pi}, \alpha \sim \pi(\cdot|s)}[C_{\text{U}}(s, \alpha)]}_{J_{\text{U}}(\pi)}$$

 $J_{BC}(\pi)$ is the *supervised behavior cloning cost* (mimics the expert within its distribution)

 $J_{U}(\pi)$ is an *uncertainty cost*

(returns to the expert's distribution if it deviates)

$$C_{\mathsf{U}}(s, \alpha) = \mathsf{Var}_{\pi \sim \Pi_{\mathsf{E}}}(\pi(\alpha|s))$$

where Π_E is an *ensemble of policies* trained on the demonstration data

Key insight: ensemble *variance is high* where data is sparse and *variance is low* where data is dense

Our algorithm: DRIL

(DRIL: Disagreement-Regularized Imitation Learning)

Input π^* demonstration data

train π and Π_E using data

For t = 1, ...

- Perform supervised update to minimize $J_{BC}(\pi)$ using \mathcal{D}
- Perform step of policy gradient using $C_{II}^{clip}(s, a)$

End For

Guarantees and further details

Regret Gurantee:

 $J_{\text{alg}}(\pi)$ has regret $\mathcal{O}(\kappa \epsilon T)$

we define κ as:

$$\kappa = \min_{\mathcal{U} \subseteq \mathcal{S}} \frac{\alpha(\mathcal{U})}{\beta(\mathcal{U})}$$

where $\alpha(\mathcal{U})$ is *concentrability* inside of \mathcal{U} and $\beta(\mathcal{U})$ is *minimum variance of the ensemble* outside of \mathcal{U}

we can show that behavior cloning has quadratic regret on this problem and dril has linear regret

Experiments

Continuous Control

Atari

