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Machine learning model inspired by biological neural 
networks

What is artificial neural network (ANN)?
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Functional mapping between input values and output 
values

But what is artificial neural network (ANN)?
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Larger networks:

What is the problem?

5

Pro’s:
- Learn quickly
- Less sensitive to initial 

condition
- Less sensitive to local 

minima

Con’s: 
- Overfitting

[Reed, 1993]
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Smaller networks:

What is the problem?

6

Pro’s:
- Generalize better
- Faster build
- Faster to compute
- Easier understand

Con’s: 
- Underfitting

[Reed, 1993]
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Dropout [Hinton et al., 2014] 

Current Approaches to solving overfitting:
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DropConnect [Wan et. al, 2013] 

Current Approaches to solving overfitting:

8

Regular Network: DropConnect Network:
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Can we harness the benefits of both small and large 
networks 

But …… 

9

Larger networks:

Pro’s:
- Learn quickly
- Less sensitive to initial 

condition
- Less sensitive to local minima

Con’s: 
- Overfitting

[Reed, 1993]

Smaller networks:

Pro’s:
- Generalize better
- Faster build
- Faster to compute
- Easier understand

Con’s: 
- Underfitting
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Can  we train on a large network and remove hidden units 
to make the network smaller

Lets try pruning …...

10

Train: Prune:
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Neural Net Pruning - Why and How [Sietsma et. al, 1988] 

Pruning Neural Networks:
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Others …...

Pruning Neural Networks:

12

[Sietsma et al., 1988] 

Pattern Recognition Theory 

[Chung et al., 1993] 

Reed’s survey, Sensitivity 
Pruning [Reed, 1993]

Optimal Brain Damage 
[Le Cun et al., 1990] 

Modified Back Propagation

Singular value decomposition (SVD)

[Xue et al., 1990] 

Modified Cross Validation [Castellano et al., 1997] 

…..
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Develop a pruning technique that can be 
applied to a fully connected layer of a 
neural network to addresses two issues 

that neural networks face: overfitting and 
tuning hyperparameters

Research Objective
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Develop a pruning technique that can be 
applied to a fully connected layer of a 

neural network to addresses three issues 
that neural networks face: overfitting, 

tuning hyperparameters, and expensive 
hardware.

Research Objective

14

Our Contributions…

•A novel pruning technique that can be applied to 
fully connected hidden layer of a neural network to 
address overfitting and tuning the network 
configuration.

•Demonstration of BCAP's ability to prune data sets in 
two domains: Life science and Vision 
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BCAP: Model Description
Pruning 

Hidden units

Error Metric

Stopping 
Criteria 

Finding 
Prunable 

hidden Units
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Groups and 
Cosine Curve 

Approximation
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Feedforward Network:

16

n - number of records in the data, 
l - index for fully connected hidden layer
hl- number of hidden units in a layer l
xl - output of layer l with dimension h by n
wl - weights matrix  associated with the layer l
bl - bias matrix associated with the layer l
f(x) - activation function
 z(l+1) -  input matrix to l+1

Formal Feedforward Operation: 

Definitions:
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BCAP can be described as mapping the h dimensions of the weight and bias vectors to 
h', where h' <= h

BCAP Modification on FeedForward Network:

17

Original FeedForward Model:

BCAP FeedForward Model:
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A node is prunable if it produces output similar to another node in the same layer and 
the cosine similarity is used to detect the similarity between hidden units.

Finding Prunable hidden Units:
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Finding Prunable hidden Units:

19

Z = W x + b

W11  W12
W21   W22
W31   W31

Z =
8  9
3  4

(8W11+ 3W12) + b1      (9W11+ 4W12) + b2 
(8W21+  3W22) + b1     (9W21+  4W22) + b2  
(8W31+ 3W32)  + b1      (9W31+ 4W31) + b2 

Z =

Two Records

.5    .7

.2    .3   

.5    .7
Z = Three hidden hidden units

A
B

C

b1 
b2 +
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BCAP: Model Description
Pruning 

Hidden units

Error Metric

Stopping 
Criteria 

Finding 
Prunable 

hidden Units
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Groups and 
Cosine Curve 

Approximation

✓
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Pruning Hidden Units:

21

When dealing with a fully-connected hidden layer, every hidden unit receives the same 
input from the previous layer
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We formally describe how to mathematically combine hidden units:

Pruning Hidden Units:
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BCAP: Model Description
Pruning 

Hidden units

Error Metric

Stopping 
Criteria 

Finding 
Prunable 

hidden Units
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Groups and 
Cosine Curve 

Approximation

✓
    ✓
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Error Metric:

24

In practice, if there are hidden units in a hidden layer l that are similar, the cosine 
similarity measurement produced is not exactly 1
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Formally we describe how to mathematically the error that is introduced:

Error Metric:
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In general we would like to minimize the effect on the network's performance 
capability with respect on the error e discussed because we do not know if the effect is 
positive (i.e. increasing generalization) or negative (decreasing generalization).

Our error measurement is based on the Mean Square Error (MSE):

Error Metric:
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The MSE equation defined above is not sufficient enough for a error metric because it 
has depends on the size of hidden layer. Dividing by size of the hidden layer shares the 
error measure across all the nodes in the layer, rather than letting one node's change 
dominate the error

Error Metric:
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BCAP: Model Description
Pruning 

Hidden units

Error Metric

Stopping 
Criteria 

Finding 
Prunable 

hidden Units
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Groups and 
Cosine Curve 

Approximation

✓
    ✓

    ✓
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We would like prune hidden units from the most similar to least similar, where the 
maximum amount of error introduced in the network from all the prunes is less than ε.

Stopping Criteria:
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We would like prune hidden units from the most similar to least similar, where the 
maximum amount of error introduced in the network from all the prunes is less than ε.

Stopping Criteria:
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We would like prune hidden units from the most similar to least similar, where the 
maximum amount of error introduced in the network from all the prunes is less than ε.

Stopping Criteria:
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One way to find the optimal amount of prunes with respect the stopping parameter ε is 
by iterating over all the possible prunable hidden units from the most similar to least 
similar. 

If hidden layer l has n hidden units, the number of 2-combinations that can be formed is 
roughly n2:

Stopping Criteria:
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BCAP: Model Description
Pruning 

Hidden units

Error Metric

Stopping 
Criteria 

Finding 
Prunable 

hidden Units
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Groups and 
Cosine Curve 

Approximation

✓
    ✓

    ✓
    ✓
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This means that it will roughly take us quadratic time to explore all of angles produced 
from computing the similarity between hidden units. We would like to reduce this 
computation time by approximating the optimal angle associated with the last possible 
prunable hidden unit pair.

Groups and Cosine Curve Approximation:
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The cosine similarity is a function that has a domain [0o,180o] and range [1,0]where the 
cosine of degree 0o is 1, cosine of degree 90o is 0, and the cosine of degree 180o is -1. 
We can divide the cosine similarity into i parts and use those values to find the optimal 
angle threshold denoted as ti. 

Groups and Cosine Curve Approximation:

BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting
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The cosine similarity is a function that has a domain [0o,180o] and range [1,0]where the 
cosine of degree 0o is 1, cosine of degree 90o is 0, and the cosine of degree 180o is -1. 
We can divide the cosine similarity into i parts and use those values to find the optimal 
angle threshold denoted as ti. 

Groups and Cosine Curve Approximation:
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Groups and Cosine Curve Approximation:

In addition to creating a series of ti to find the optimal degree threshold, we need to 
combine similar hidden units into groups denoted as Gi. If we do not group hidden 
units, we would be performing the same amount of computation as the iterative version.

BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting
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BCAP: Model Description
Pruning 

Hidden units

Error Metric

Stopping 
Criteria 

Finding 
Prunable 

hidden Units
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Groups and 
Cosine Curve 

Approximation

✓
    ✓

    ✓
    ✓

     ✓
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BCAP Formal Algorithm:

BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting
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We evaluate the BCAP pruning technique on fully connected neural networks layers 
trained on various datasets in different domains for classifications tasks. 

We intentionally use hidden layer sizes larger than necessary to take advantage of large 
networks ability to learn fast and then we either prune the network after or during 
training. If the training duration (i.e epochs) is too short, we avoid applying BCAP 
during training. 

Experiments:

BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting
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The MNIST data set contains 28 x 28 pixel black and white handwritten digit images. 
There are 10 handwritten digits in this data set which range from 0 to 9 (10-classes). 
The training and test set contains digits from each of the classes

Experiments:

BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting
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Experiments: [2-layer MLP with 800 in each layer]

BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting
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Pruning Analysis

Tuning BCAP 

Error ε

43BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting

Tradeoff 
Between 
Accuracy and 
Network Size

Pruning Epoch 

for Activation 

functions

Tuning of 

BCAP Error ε
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This parameter decides on how much error will be introduced into the network after 
pruning. 

Tuning of BCAP Error ε:

BCAP: An Artificial Neural Network Pruning Technique to Reduce Overfitting
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Pruning Analysis

Tuning BCAP 

Error ε
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Tradeoff 
Between 
Accuracy and 
Network Size

Pruning Epoch 

for Activation 

functions

Tuning of 

BCAP Error ε         ✓
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When pruning neural networks there is an inherent trade off between the neural 
network size and accuracy. We would like to minimize the network size and maximize 
the accuracy of the network with respect to the test data set  

Tradeoff Between Accuracy and Network Size:
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Pruning Analysis

Tuning BCAP 

Error ε
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Tradeoff 
Between 
Accuracy and 
Network Size

Pruning Epoch 

for Activation 

functions

Tuning of 

BCAP Error ε         ✓

      ✓
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Pruning Epoch for Activation functions:
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Pruning Epoch for Activation functions:
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• Method for pruning a fully connected layer of a neural 
network 

• Evidence that pruning neural network can be effective

Conclusions from our work
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• Explore other types of neural networks besides MLP

• Exploring neural networks with more than 2 hidden 
layers

• Evaluate pruning hidden units whose directions are 
opposite

Future work
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• Explore other types of neural networks besides MLP

• Exploring neural networks with more than 2 hidden 
layers

• Evaluate pruning hidden units whose directions are 
opposite

Future work

52

Our method is a promising technique to help 
reduce overfitting and increasing generalization in a 

neural network. 
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Thank you
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