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Reinforcement Learning (RL)

Agent interactively takes some action in the Environment and
receive some reward for the action taken.

Agent’s Goal: maximize long-term reward
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Example

state: position on the grid

actions: {←, →, ↑, ↓}
desired behavior: reaching
the End
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Example

state: position on the grid

actions: {←, →, ↑, ↓}
desired behavior: reaching
the End

Solving this task using Standard RL:
Let reward be +1 when agents reach the End and 0 otherwise

Let the agent maximize the reward
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More Complex Desired Behavior

Desired Behavior

Reach the End

Don’t step on the bombs

Don’t get electrocuted too
much

Collect many coins

Finish fast
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One Approach: Applying Standard RL

Desired Behavior

reaching the End ⇒ Big Positive Reward

stepping on the bombs ⇒ Big Negative Reward

getting electrocuted ⇒ Small Negative reward

collecting coins ⇒ Small Positive reward

each time step ⇒ Small Negative reward

Let the agent learn to maximize the reward

Guarantee for satisfying our desired behavior?
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Let the agent learn to maximize the reward

Guarantee for satisfying our desired behavior?
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This is difficult...

Not a straightforward task

Gets harder as desired behavior get more complex

Agent might maximize the reward without satisfying our
desired behavior

Not possible (or at least clear) how to model some behaviors
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Our Approach: Constraint-based RL

Some behavior are easier to be expressed by constraints

These constraints can be used to

enforce safety (e.g., not getting electrocuted)
mimic Expert’s behavior (e.g., be close to an expert)
encourage diversity (e.g., visit more states)
. . .
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Example Constraint: Being Electrocuted

Let’s model it as

at time t we get electrocuted by electric current of currentt
(it can be zero)

threshold α

constraint as E[
∑T

t=1 currentt ] ≤ α
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Setting

Standard RL setting:
For t = 1, 2, . . . ,T :

arrive at state st ∈ S
take an action at ∼ π(st) ∈ A policy π : S → ∆(A)

receive reward rt ∈ R

Goal: find π that maximizes R(π) = E[
∑T

t=1 rt ]
(expectation over randomness in both policy and environment)
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Setting

Our Setting:
For t = 1, 2, . . . ,T :

arrive at state st ∈ S
take an action at ∼ π(st) policy π : S → ∆(A)

receive reward rt ∈ R
receive measurement zt ∈ Rd

Goal: find π that maximizes R(π) = E[
∑T

t=1 rt ]

Goal: find π such that Z (π) = E[
∑T

t=1 zt ] ∈ C (target set)
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General Constraints

we model our desired behavior as a target set C and we want the
agent to behave in a way that long term measurement Z (π) lie in

the set.
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Desired Behavior as C

Examples:

Safety: not getting electrocuted while collecting enough gold

zt = (currentt , goldt)
C = {z = (z1, z2) ∈ R2 | z1 ≤ α1, z2 ≥ α2}

Diversity: exploring the state space

zt = (z1
t , . . . , z

|S|
t ) where z i

t = 1{st = i}
C { z | entropy of z

T is high }
= {z ∈ R|S| | H( z

T ) ≥ α}
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This talk

Present an algorithm: solve this RL task with general convex
constraint

Make connection to online learning and game theory

Guarantee on performance of the algorithm
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Related Work

Constrained MDP (CMDP)

maximizing reward subject to orthant constraints

Find π that maximizes R(π) s.t. Z (π) ∈ C

C = {z = (z1, z2, . . . , zd) | zi ≤ αi for all i}
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Related Work

Constrained MDP (CMDP)

maximizing reward subject to orthant constraints

Introduced by [?]
Lagrangian methods and solving the dual LP
Full knowledge of MDP

Constrained Policy Optimization (CPO) [?]
safety constraints
guarantees for near-constraint satisfaction at each iteration

Reward Constrained Policy Optimization (RCPO) [?]
asymptotic analysis for convergence

Batch Policy Learning Under Constraints [?]
Iteration complexity
Generalization bounds
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Other Related Work

Provably Efficient Maximum Entropy Exploration [?]

maximize concave function over state distribution

A game-theoretic approach to apprenticeship learning [?]

true reward as linear combination of features
mimic Expert’s behavior

Bandits with concave rewards and convex knapsacks [?]

maximize concave function over average measurement vector
subject to average measurement vector lies in a convex set
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Other Related Work

Blackwell approachability and no-regret learning are
equivalent [?]

show equivalence between no-regret learning and repeated
game playing with vector payoff
some ideas and techniques used in this work has been inspired
by this paper
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Our Contribution

Able to deal with general constraints

Aim for more than one of these criteria. e.g., encourage
diversity while satisfying some safety constraints.

Theoretical guarantee
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Recall Our Setting

For t = 1, 2, . . . ,T :

arrive at state st ∈ S
take an action at ∼ π(st) policy π : S → ∆(A)

receive measurement zt ∈ Rd

Goal: find π such that Z (π) = E[
∑T

t=1 zt ] ∈ C (target set)
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Environment is an MDP

Let β ∈ ∆(S) the initial distribution.

Markov Assumption: next state and measurements
according to some distribution which only depends on current
state and action.

initial state s0 ∼ β
st+1 ∼ Ps(· | st , at)
actions zt ∼ Pz(· | st , at)
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Problem Statement

Problem (Feasibility)

find π ∈ Π

s.t Z (π) ∈ C

Π is set of all π : S → ∆(A)(set of stationary policies)
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It’s actually a game. . .

find π ∈ Π

s.t Z (π) ∈ C
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It’s actually a game. . .

find π ∈ Π

s.t Z (π) ∈ C

Let’s solve a stronger problem

min
π∈Π

dist(Z (π), C)
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It’s actually a game. . .

find π ∈ Π

s.t Z (π) ∈ C

Let’s solve a stronger problem

min
π∈Π

dist(Z (π), C)

How to convert it into a game?

Reinforcement Learning with Convex Constraints



It’s actually a game. . .

find π ∈ Π

s.t Z (π) ∈ C

Let’s solve a stronger problem

min
π∈Π

dist(Z (π), C)

How to convert it into a game?
Let’s assume for now that we are able to write

dist(Z (π), C) = maxθ∈K〈θ,Z (π)〉
for some convex set K
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It’s actually a game. . .

We started with

find π ∈ Π

s.t Z (π) ∈ C

converted it into

min
π∈Π

max
θ∈K
〈θ,Z (π)〉
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We have a game. . .

min
π∈Π

max
θ∈K
〈θ,Z (π)〉
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We have a game. . .

min
π∈Π

max
θ∈K
〈θ,Z (π)〉

payoff g(π,θ) = 〈θ,Z (π)〉

Min Player: (Plays First)

pick some π ∈ Π

wants to minimize
maxθ∈K g(π,θ)

Max Player: (Plays Second)

observe π

pick some θ ∈ K
wants to maximize g(π,θ)
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We have a game. . .

min
π∈Π

max
θ∈K
〈θ,Z (π)〉

payoff g(π,θ) = 〈θ,Z (π)〉

Min Player: (Plays First)

pick some π ∈ Π

wants to minimize
maxθ∈K g(π,θ)

Max Player: (Plays Second)

observe π

pick some θ ∈ K
wants to maximize g(π,θ)

Can we change the order of the play in this game?
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Minimax Theorem

celebrated minimax theorem discovered by John von Neumann in
1920s.

Theorem

Assume:

X ,Y compact and convex

g : X × Y → R convex in first and concave in the second
argument

min
x∈X

max
y∈Y

g(x , y) = max
y∈Y

min
x∈X

g(x , y)
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Back to our game. . .

min
π∈Π

max
θ∈K
〈θ,Z (π)〉
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Back to our game. . .

min
π∈Π

max
θ∈K
〈θ,Z (π)〉

Assume that conditions of minimax are satisfied
(needs small tweak)

max
θ∈K

min
π∈Π
〈θ,Z (π)〉
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Back to our game. . .

min
π∈Π

max
θ∈K
〈θ,Z (π)〉

Assume that conditions of minimax are satisfied
(needs small tweak)

max
θ∈K

min
π∈Π
〈θ,Z (π)〉

now we can solve this game, because. . .

Reinforcement Learning with Convex Constraints



First

max
θ∈K

min
π∈Π
〈θ,Z (π)〉

Given θ, minπ∈Π〈θ,Z (π)〉 is equivalent to solving the standard RL
setting with scalar reward of rt = −〈θ, zt〉
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First

max
θ∈K

min
π∈Π
〈θ,Z (π)〉

Given θ, minπ∈Π〈θ,Z (π)〉 is equivalent to solving the standard RL
setting with scalar reward of rt = −〈θ, zt〉

〈θ,Z (π)〉 = 〈θ,E[
T∑
t=1

zt ]〉

= E[
T∑
t=1

〈θ, zt〉]

= −R(π)
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First

max
θ∈K

min
π∈Π
〈θ,Z (π)〉

Given θ, minπ∈Π〈θ,Z (π)〉 is equivalent to solving the standard RL
setting with scalar reward of rt = −〈θ, zt〉

〈θ,Z (π)〉 = 〈θ,E[
T∑
t=1

zt ]〉

= E[
T∑
t=1

〈θ, zt〉]

= −R(π)

argminπ〈θ,Z (π)〉 = argmaxπR(π)
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Second

Folklore result attributed to [?]

we can find optimal strategies for players of a game by
pitting two online learning strategies against each other
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Second

Folklore result attributed to [?]

we can find optimal strategies for players of a game by
pitting two online learning strategies against each other

as a special case: a no-reget algorithm vs best response( )
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Second

Folklore result attributed to [?]

we can find optimal strategies for players of a game by
pitting two online learning strategies against each other

as a special case: a no-reget algorithm vs best response( )

Before going further into details
Let’s fill the gaps in our approach
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Back to the game

Satisfying conditions minimax theorem:

min
π∈Π

max
θ∈K
〈θ,Z (π)〉
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Mixed Policy

a mixed policy µ is a distribution over countable number of
policies.

Πmix = {µ : Π→ [0, 1] |
∑

π∈Π µ(π) = 1}
Z (µ) = Eπ∼µ[Z (π)] R(µ) = Eπ∼µ[R(π)]
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Substituting Mixed Policy

Satisfying conditions minimax theorem:

min
µ∈Πmix

max
θ∈K
〈θ,Z (µ)〉

K is convex and 〈θ,Z (µ)〉 is affine in θ

what about Πmix?:

if we define µ = αµ1 + (1− α)µ2 ∈ Πmix as

µ(π) = αµ1(π) + (1− α)µ2(π)

Z (µ) = αZ (µ1) + (1−α)Z (µ2) and consequently 〈θ,Z (µ)〉 is
affine in µ
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Substituting Mixed Policy

Satisfying conditions minimax theorem:

min
µ∈Πmix

max
θ∈K
〈θ,Z (µ)〉

K is convex and 〈θ,Z (µ)〉 is affine in θ

what about Πmix?:

if we define µ = αµ1 + (1− α)µ2 ∈ Πmix as

µ(π) = αµ1(π) + (1− α)µ2(π)

Z (µ) = αZ (µ1) + (1−α)Z (µ2) and consequently 〈θ,Z (µ)〉 is
affine in µ
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So far we showed. . .

we started with

min
π∈Π

dist(Z (π), C)
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So far we showed. . .

we started with

min
π∈Π

dist(Z (π), C)

ended up with

max
θ∈K

min
µ∈Πmix

〈θ,Z (µ)〉
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So far we showed. . .

we started with

min
π∈Π

dist(Z (π), C)

ended up with

max
θ∈K

min
µ∈Πmix

〈θ,Z (µ)〉

missing part:

dist(Z (π), C) = maxθ∈K〈θ,Z (π)〉
for some convex set K
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Conic Duality

Definition (Cone)

A set C ⊆ Rd is a cone if it is closed under multiplication by
nonnegative scalars.

Definition (Conic Hull)

K ⊆ R convex, define cone(K ) = {αx : α ∈ R+, x ∈ K}

it is easy to check that cone(K ) is also convex
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Definition (Polar Cone)

Given any convex cone C ⊆ Rd , we can define the polar cone of C
as

C 0 := {θ ∈ Rd : 〈θ, x〉 ≤ 0 for all x ∈ C}

C ◦ is a convex cone

(C ◦)◦ = C

Reinforcement Learning with Convex Constraints



Lemma ([?])

For every convex cone C in Rd

dist(x ,C ) = max
θ∈C0∩B2(1)

〈θ, x〉

where B2(r) is l2 ball of radius r .
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Cone Target Set

Assume: target set C is a cone
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Cone Target Set

Assume: target set C is a cone

missing part:

dist(Z (π), C) = maxθ∈K〈θ,Z (π)〉
K = C ◦ ∩ B2(1)
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How to solve this game

maxθ∈Kminµ∈Πmix〈θ,Z (µ)〉
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How to solve this game

maxy∈Y minx∈X g(x , y)
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How to solve this game

maxy∈Y minx∈X g(x , y)
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How to solve this game

y-Player strategy ȳ = 1
T

∑T
i=1 yt x-Player strategy x̄ = 1

T

∑T
i=1 xt

Reinforcement Learning with Convex Constraints



Online Learning

Actor is given a convex decision set K ⊆ Rd

At time t = 1, 2, . . . ,T

Actor takes an action θt ∈ K
Receive a loss function `t : K → R
Incur loss of `t(θt)
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What’s the Goal?

Learner wants to minimize regret
(i.e., Competing with best action in hindsight)
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What’s the Goal?

Learner wants to minimize regret
(i.e., Competing with best action in hindsight)

Definition (Regret)

RegretT =
∑T

t=1 `t(θt)−minθ∈K
∑T

t=1 `t(θ)
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What’s the Goal?

Learner wants to minimize regret
(i.e., Competing with best action in hindsight)

Definition (Regret)

RegretT =
∑T

t=1 `t(θt)−minθ∈K
∑T

t=1 `t(θ)

Cornerstone of online learning: no-regret learning
sublinear regret RegretT ∈ o(T ) (i.e., RegretT

T → 0 as T →∞)

Reinforcement Learning with Convex Constraints



What’s the Goal?

Learner wants to minimize regret
(i.e., Competing with best action in hindsight)

Definition (Regret)

RegretT =
∑T

t=1 `t(θt)−minθ∈K
∑T

t=1 `t(θ)

Cornerstone of online learning: no-regret learning
sublinear regret RegretT ∈ o(T ) (i.e., RegretT

T → 0 as T →∞)

When do we have such algorithm?
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Convex Loss Function (OCO)

Case 1: all `t(·) are convex
Online Convex Optimization (OCO)

Theorem

Assume: K and ‖∇`t(θ)‖ are bounded for every t and θ ∈ K.
Then, there exists an algorithm OK with RegretT (OK) ∈ o(T )

We’ll give such algorithm called Online Gradient Descent [?] in the
next slide.
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Online Gradient Descent

Algorithm Online Gradient Descent (OGD)

1: input: projection oracle ΓK {ΓK(θ) = argminθ′∈K ‖θ − θ′‖2}
2: init: θ1 arbitrarily
3: parameters: step size ηt
4: for t = 1 to T do
5: θ′

t+1 = θt − ηt∇`t(θt)
6: θt+1 = ΓK(θ′

t+1)
7: end for
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Plugging in. . .

maxθ∈Kminµ∈Πmix〈θ,Z (µ)〉
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Best Response can be simplified. . .

maxθ∈Kminµ∈Πmix〈θ,Z (µ)〉
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The Algorithm

maxθ∈Kminµ∈Πmix〈θ,Z (µ)〉

Algorithm Main Algorithm

input: convex cone C, OCO Algorithm O
set K := C◦ ∩ B2(1)
for t = 1 to T do

θt ← OK makes a decision K
πt ← argmaxπ∈ΠR(π) {find best policy in scalar MDP with r = −〈θt , z〉 }
OK observe loss `t(θ) = −〈θ,Z(πt)〉

end for
µ = 1

T

∑T
t=1 πt

return µ
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Best-response Oracle

Best-response oracle: BestResponse(θ).
Given θ ∈ Rd , return a policy π ∈ Π that satisfies
R(π) ≥ maxπ′∈Π R(π′)− ε0, where R(π) is the
long-term reward of policy π with scalar reward
defined as r = −θ · z .
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OGD needs gradient and projection oracle

The gradient of loss function: −Z (πt) (can be simply estimated)

Estimation oracle: Est(π).
Given policy π, return ẑ satisfying ‖ẑ − Z (π)‖ ≤ ε1.

If we can project into C we can project into K = C◦ ∩ B2(1)

Projection oracle: ΓC(x) = argminx ′∈C ‖x − x ′‖.
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ApproPO

Algorithm ApproPO

input: BestResponse(·),Est(·), ΓC
set: K := C◦ ∩ B2(1)
init: θ1 arbitrarily in K
for t = 1 to T do
πt ← BestResponse(θt)
ẑt ← Est(πt)
θt+1 = ΓK(θt + ηẑt)

end for
µ = 1

T

∑T
t=1 πt

return µ
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Main Theorem

Theorem (Main Theorem)

If we run ApproPO for T iteration and µ is the mixed policy
returned by the algorithm, then we have

dist(Z (µ), C) ≤ min
µ∈Πmix

dist(Z (µ), C) + O(T−1/2) + ε0 + 2ε1
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ApproPO-feasibility

If we are only interested in feasibility problem, replacing
best-response with a weaker oracle suffices

Positive-response oracle: PosResponse(θ).
Given θ ∈ Rd , return π ∈ Π that satisfies
R(π) ≥ −ε0 if maxπ′∈Π R(π′) ≥ 0 (and arbitrary π
otherwise), where R(π) is the long-term reward of π
with scalar reward r = −θ · z .
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Removing Cone Assumption

Lemma (extension of Lemma 14 [?])

Assume: compact and convex C, for any δ > 0, let κ =
maxc∈C‖c‖2√

2δ

Then, for any c ∈ Rd

dist(c , C) ≤ (1 + δ)dist(c ⊕ κ, C̃)

where C̃ = cone(C × {κ})
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Projection into C̃

Find ΓC̃(p) given access to ΓC(·)
Let Hα = {θ ∈ Rd+1 | θd+1 = α}
Let Cα = Hα ∩ C̃ = α

κC ⊕ α

qα = ΓCα(p) =
α

κ
ΓC(

κ

α
p1:d)

q = ΓC̃(p) = argminqα ‖qα − p‖2

It’s easy to check that ‖qα − p‖2 is
convex in α. Therefore, we can find
α∗ which minimize this function, and
the original projection will be on qα∗
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Practical Implementation:

Algorithm ApproPO

input: BestResponse(·),Est(·), ΓC
set: K := C◦ ∩ B2(1)
init: θ1 arbitrarily in K
for t = 1 to T do
πt ← BestResponse(θt)
ẑt ← Est(πt)
θt+1 = ΓK(θt + ηẑt)

end for
µ = 1

T

∑T
t=1 πt

return µ
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Practical Implementation: Positive Response oracle

Replaced Best Response oracle with Positive Response oracle

Algorithm ApproPO

input: PosResponse(·),Est(·), ΓC
set: K := C◦ ∩ B2(1)
init: θ1 arbitrarily in K
for t = 1 to T do
πt ← BestResponse(θt)
πt ← PosResponse(θt)
ẑt ← Est(πt)
θt+1 = ΓK(θt + ηẑt)

end for
µ = 1

T

∑T
t=1 πt

return µ
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Practical Implementation: Estimation Oracle

Replaced Best Response oracle with Positive Response oracle

Average measurement vector ẑt collected from last
n-trajectories from Positive Response oracle

Algorithm ApproPO

input: PosResponse(·),Est(·), ΓC , n
set: K := C◦ ∩ B2(1)
init: θ1 arbitrarily in K
for t = 1 to T do
πt ← BestResponse(θt)
(πt , ẑt)← PosResponse(θt ,n)
ẑt ← Est(πt)
θt+1 = ΓK(θt + ηẑt)

end for
µ = 1

T

∑T
t=1 πt

return µ
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Practical Implementation: Cache

Replaced Best Response oracle with Positive Response oracle

Average measurement vector ẑt collected from last
n-trajectories from Positive Response oracle

Maintain cache of all (πt , ẑt)

Algorithm ApproPO

input: PosResponse(·),Est(·), ΓC , n
set: K := C◦ ∩ B2(1)
init: θ1 arbitrarily in K
for t = 1 to T do
πt ← BestResponse(θt)
(πt , ẑt)← PosResponse(θt ,n)
ẑt ← Est(πt)
θt+1 = ΓK(θt + ηẑt)

end for
µ = 1

T

∑T
t=1 πt

return µ
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Experiments: Mars Rover Gridworld [?]

G

R R

R R

R R R

R

Star: Start
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G

R R

R R

R R R

R

Star: Start

G: Goal
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Experiments: Mars Rover Gridworld [?]

G

R R

R R

R R R

R

Star: Start

G: Goal

R: Rocks
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Experiments: Mars Rover Gridworld [?]

G

R R

R R

R R R

R

Star: Start

G: Goal

R: Rocks
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Experiments: Mars Rover Gridworld [?]
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Star: Start

G: Goal

R: Rocks

Episode: terminates when a
rock or goal is reached

Reward: zero for terminating,
and small negative reward each
time step

Constraint: probability of
hitting a rock below a threshold

Environment stochastic:
probability δ = 0.05 agent
takes random action
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Algorithm RCPO

input: A2C(·), α
init: θ1 arbitrarily
for t = 1 to T do

(πt , ct)← A2C(θt , 1)
θt+1 = θt + η(ct − α)

end for
return πt

[?]

Algorithm ApproPO

input:PosResponse(·),ΓC
set: K := C◦ ∩ B2(1)
init: θ1 arbitrarily in K
for t = 1 to T do

(πt , ẑt)← PosResponse(θt , n)
θt+1 = ΓK(θt + ηẑt)

end for
µ = 1

T

∑T
t=1 πt

return µ
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Results:
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Any Questions?
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