Reinforcement Learning with Convex Constraints Sobhan Miryoosefi¹, Kianté Brantley², Hal Daumé III^{2,3}, Miroslav Dudík³, Robert E. Schapire³ ¹Princeton University, ²University of Maryland, ³Microsoft Research

Main ideas

find a policy satisfying some (convex) constraints on the observed average "measurement vector"

Constraint-based RL:

more natural in many applications

Examples of constraints we allow:

- [previously studied] orthant constraints: bounds on total wear, probability of bad events (safety), ...
- [new] bound on distance to expert behavior, distance to uniform distribution (diversity), ...
- bound on reward can be incorporated (as a constraint)

Our game-theoretic approach:

- relies on ability to approximately solve standard RL
- uses any off-the-shelf RL algorithm
- satisfies rigorous theoretical guarantees

Convex feasibility problem

Model: $M = (S, A, \beta, P_s, P_z)$ vector-valued MDP S states, \mathcal{A} actions, β initial distribution transitions: $s_{i+1} \sim P_s(\cdot | s_i, a_i), \quad s_0 \sim \beta$ $\pi \in \Pi$ stationary policy, $a_i \sim \pi(s_i)$ vector measurements: $\mathbf{z}_i \sim P_z(\cdot | s_i, a_i), \quad \mathbf{z}_i \in \mathbb{R}^d$

Find a policy $\pi \in \Pi$ such that *long-term measurement* $\overline{\mathbf{z}}(\pi)$ lies in a convex target set \mathcal{C}

where (for some discount factor $\gamma \in [0, 1)$)

$$\overline{\mathbf{z}}(\pi) \triangleq \mathbb{E}\left[\sum_{i=0}^{\infty} \gamma^{i} \mathbf{z}_{i} \mid \pi\right]$$

We consider mixed policies $\mu \in \Delta(\Pi)$ (distributions over finitely many policies in Π):

 $\overline{\mathbf{z}}(\mu) \triangleq \mathbb{E}_{\pi \sim \mu} \big[\overline{\mathbf{z}}(\pi) \big]$

Return $\mu = \frac{1}{T} \sum_{t=1}^{T} \pi_t$

Guarantees and further details

long-term reward in a standard MDP with scalar reward $r_i = -\lambda \cdot z_i$.

- cache previous results and check if they give positive reward.

[RCPO baseline] C. Tessler, D. Mankowitz, S. Mannor. Reward Constrained Policy Optimization. ICLR 2019.