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“A foundation model is any model that is trained on broad data that can 
be adapted (e.g., fine-tuned) to a wide range of downstream tasks”

1On the Opportunities and Risks of Foundation Models by Bommasani et al. 2022

Foundational Models
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> 70B params

p(y1, y2, …, yn) = p(y1)p(y2 |y1)p(y3 |y1, y3)… =
n

∏
i=1

p(yi |y1, …, yi−1)

Large Language Model

Foundational Models

for example, 

p( ⋅ |you, only, live)

context

predict next word
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p(y1, y2, …, yn) = p(y1)p(y2 |y1)p(y3 |y1, y3)… =
n

∏
i=1

p(yi |y1, …, yi−1)

Large Language Model
Foundational Models

Pre-Training

Large Unlabeled Dataset
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Large Language Model
Foundational Models

Pre-Training

L(y) = −
n

∑
i

log p(yi |y<i) next word prediction 

Large Unlabeled Dataset
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A computer motherboard is the main circuit 
board in a computer. It is the backbone of …

Input: x Output: y

What is the capital of France? The capital of France is Paris.

Describe the function of a computer 
motherboard

…. ….

Foundational Models

predicting the next token 
conditioned on some 
context 

L(x, y) = −
n

∑
i

log p(yi |y<i, x)

Fine-Tuning

Large Language Model
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Foundational Models

Environment

Create a shopping list from this recipe: 
Trim the ends off zucchini. Cut zucchini…

Bake, uncovered, at 350° for 20-25 minutes or 
until zucchini is tender and cheese is melted.

action

state

Please provide a complete list of ingredients

…

user ?

Training language models to follow instructions with human feedback Ouyang et al. 2022 8



Foundational Models
objective alignment issue

Environment

Create a shopping list from this recipe: 
Trim the ends off zucchini. Cut zucchini…

Bake, uncovered, at 350° for 20-25 
minutes or until zucchini is tender and cheese is 

action

state

Please provide a complete list of ingredients

…

?
Input: x Output: y

What is the capital of France? The capital of France is Paris.

Describe the function of a computer 
motherboard

A computer motherboard is the main circuit 
board in a computer. It is the backbone of …

… …

L(x, y) = −
n

∑
i

log p(yi |y<i, x)

Fine-Tuning Test

Next word prediction Ability to follow instructions 
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Foundational Models

“Making language models bigger does not 
inherently make them better at following a user’s 
intent. For example, large language models can 
generate outputs that are untruthful, toxic, or 
simply not helpful to the user. In other words, 
these models are not aligned with their users.”

Long Ouyang et al.

Training language models to follow 
instructions with human feedback

OpenAI 2022 
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An Old Problem

“… the network must not solely be shown examples of 
accurate driving, but also how to recover (i.e. return to 
the road center) once a mistake has been made.”

Dean Pomerleau

Alvinn: Ann Autonomous Land 
Vehicle In A Neural Network

NeurIPS 1989
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Foundational Models

Environment

action

state

Input: x Output: y

What is the capital of France? The capital of France is Paris.

Describe the function of a computer 
motherboard

A computer motherboard is the main circuit 
board in a computer. It is the backbone of …

… …

L(x, y) = −
n

∑
i

log p(yi |y<i, x)

Fine-Tuning Interactive Fine-Tuning

Next word prediction 
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Foundational Models

Environment

action

state

Input: x Output: y

What is the capital of France? The capital of France is Paris.

Describe the function of a computer 
motherboard

A computer motherboard is the main circuit 
board in a computer. It is the backbone of …

… …

L(x, y) = −
n

∑
i

log p(yi |y<i, x)

Fine-Tuning Interactive Fine-Tuning

Next word prediction 
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Research Goal:
Develop algorithms that can learn to 
make automated decisions in the real 
world from interactions with minimal 
supervision. 



Foundational Models

Environment

action

state

…

Interactive Fine-Tuning

How do we learn from 
interactions in an 
environment?user
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Overview of Past Work
• Imitation Learning [1, 2, 12] 


• Imitation Learning with a Computational Oracle [6, 7, 8]


• Preference-Based Reinforcement Learning [3, 4, 5] 


• Constrained Reinforcement Learning [9, 10, 11]

1. Disagreement-Regularized Imitation Learning…………………………………………………………..

2. Adversarial Imitation Learning via Boosting……………………………………………………………..

3. Is reinforcement learning (not) for natural language processing?……………………………………..

4. Learning to Generate Better Than Your LLM…………………………………………………………….

5. Policy-Gradient Training of Language Models for Ranking…………………………………………….

6. Non-Monotonic Text Generation…………………………………………………………………………..

7. Active Imitation Learning with Noisy Guidance………………………………………………………….

8. Interactive Text Generation…………………………………………………………………………………

9. Reinforcement Learning with Convex Constraints………………………………………………………

10.Constrained episodic reinforcement learning in concave-convex and knapsack settings…………

11.Ranking with Long-Term Constraints……………………………………………………………………..

12.Successor feature sets: Generalizing successor representations across policies…………………..

[BSH ICLR 2020]

[CSHBS ICLR 2024]

[RABHSBHC ICLR 2023]

[CBRMS Instruction Workshop 2023]

[GCCBJ FMDM Workshop 2023]

[WBDC ICLR 2019]

[BSD ACL 2020]

[FGPBCZGD EMNLP 2024]

[MBDDS NeurIPS 2019]

[BDLMSSS NeurIPS 2020]

[BFDJ WSDM 2024]

[BMG AAAI 2021]
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Overview of Past Work Domains
Natural Language Processing [3, 4, 6, 7, 8]     


Classic Control [2, 9, 10, 12]   


Information Retrieval [5, 11]   


Video Games [1]   

• . 


• . 


• .


• .

1. Disagreement-Regularized Imitation Learning…………………………………………………………..

2. Adversarial Imitation Learning via Boosting……………………………………………………………..

3. Is reinforcement learning (not) for natural language processing?……………………………………..

4. Learning to Generate Better Than Your LLM…………………………………………………………….

5. Policy-Gradient Training of Language Models for Ranking…………………………………………….

6. Non-Monotonic Text Generation…………………………………………………………………………..

7. Active Imitation Learning with Noisy Guidance………………………………………………………….

8. Interactive Text Generation…………………………………………………………………………………

9. Reinforcement Learning with Convex Constraints………………………………………………………

10.Constrained episodic reinforcement learning in concave-convex and knapsack settings…………

11.Ranking with Long-Term Constraints……………………………………………………………………..

12.Successor feature sets: Generalizing successor representations across policies…………………..

[BSH ICLR 2020]

[CSHBS ICLR 2024]

[RABHSBHC ICLR 2023]

[CBRMS Instruction Workshop 2023]

[GCCBJ FMDM Workshop 2023]

[WBDC ICLR 2019]

[BSD ACL 2020]

[FGPBCZGD EMNLP 2024]

[MBDDS NeurIPS 2019]

[BDLMSSS NeurIPS 2020]

[BFDJ WSDM 2024]

[BMG AAAI 2021]
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Pre-Training Fine-Tuning Interactive Fine-Tuning
?
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Pre-Training Fine-Tuning Interactive Fine-Tuning
?

How can  
interaction help?

Formalize the imitation 
learning problem

How can we design 
interactive learning 
algorithms specific  

to LLMs?

objective alignment issue

18



Pre-Training Fine-Tuning Interactive Fine-Tuning
?

Formalize the imitation 
learning problem

objective alignment issue
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Foundational Models
objective alignment issue

Environment

Create a shopping list from this recipe: 
Trim the ends off zucchini. Cut zucchini…

Bake, uncovered, at 350° for 20-25 
minutes or until zucchini is tender and cheese is 

action

state

Please provide a complete list of ingredients

…

?
Input: x Output: y

What is the capital of France? The capital of France is Paris.

Describe the function of a computer 
motherboard

A computer motherboard is the main circuit 
board in a computer. It is the backbone of …

… …

Fine-Tuning Test

Next word prediction Ability to follow instructions 

L(x, y) = −
n

∑
i

log p(yi |y<i, x)

20



Reinforcement Learning
basics of mdp

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

Goal: Learn policy  to maximize rewardπ

Reward: R(s, a)

Transition: P(s′￼|s, a)

Policy: π( ⋅ |s)

States: {x, y}

Actions: { }
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Imitation Learning
basics of mdp

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

States:

Actions:

Reward: R(s, a)

Transition: P(s′￼|s, a)

Policy: π( ⋅ |s)

{x, y}

{ }
Unknown Reward

D = {(state, action)} from an expert       π⋆Training dataset:
Goal: Train a policy  to mimic the demonstrationsπ

22



1. Collect trajectories from expert  

2. Create a dataset  

3. Train a policy (classifier) 

π⋆

(s1, a1), …, (sh, ah) ∼ ρπ⋆

π

Behavior Cloning 
simplest imitation learning

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)]
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1. Collect trajectories from expert  

2. Create a dataset  

3. Train a policy (classifier) 

π⋆

(s1, a1), …, (sh, ah) ∼ ρπ⋆

π

Behavior Cloning 
simplest imitation learning

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)]min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)]
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Behavior Cloning 
simplest imitation learning

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

1. Collect trajectories from expert  

2. Create a dataset  

3. Train a policy (classifier) 

π⋆

(s1, a1), …, (sh, ah) ∼ ρπ⋆

π
min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)] ≤ ϵ
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Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”

Behavior Cloning 
simplest imitation learning

π⋆

Image Credit: Hal Daumé III

1. Collect trajectories from expert  

2. Create a dataset  

3. Train a policy (classifier) 

π⋆

(s1, a1), …, (sh, ah) ∼ ρπ⋆

π
min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)] ≤ ϵ
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Behavior Cloning 
simplest imitation learning

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

1. Collect trajectories from expert  

2. Create a dataset  

3. Train a policy (classifier) 

π⋆

(s1, a1), …, (sh, ah) ∼ ρπ⋆

π
min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)] ≤ ϵ

No Training Data

ϵ

Errors feedback and compound 

π⋆
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Behavior Cloning 
simplest imitation learning

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”

π⋆

Image Credit: Hal Daumé III

1. Collect trajectories from expert  

2. Create a dataset  

3. Train a policy (classifier)  on dataset

π⋆

(s1, a1), …, (sn, an) ∼ ρπ⋆

π
min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)] ≤ ϵ

No Training Data

≤ ϵ

Problem:
The training distribution is different 
than the test distribution resulting in 
covariate shift issues.

(x, y) ∼ ρ

(x, y) ∼ ρ

(s, a) ∼ ρπ⋆

(s, a) ∼ ρπ

Supervised Learning Behavior Cloning
Train

Test
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Behavior Cloning 
Performance Gap:
J(π⋆) − J( ̂π) ≤ 𝒪(ϵH2)

(gap scales quadratic)

Formalizing
the covariate shift issue 

ρπ⋆(s0) =
1
H

ρπ⋆(s1) =
H − 1

H

Behavior Cloning 
 Loss:

Loss( ̂π) = ϵ
(loss is small)

Efficient Reductions for Imitation Learning, Ross & Bagnell, AISTATS 2010

Lower bounds for reductions, Matti Kaariainen, Atomic Learning Workshop  2006

+1 reward

Start
0 reward

Given an expert policy: π⋆

1 − ϵH

1

ϵH

0 0

1

Consider a policy:  ̂π

J(π) := 𝔼π [
H

∑
h=1

Rh]
Performance
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Pre-Training Fine-Tuning Interactive Fine-Tuning
?

How can  
interaction help?

Formalize the imitation 
learning problem

objective alignment issue
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Interactive Imitation Learning with DAgger 

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

Loop:

- Interact in an environment (s, a) ∼ ρπ

- Get Dataset  Di = {(s, π⋆(s)}

- Aggregate dataset D ← D ∪ Di

min
π∈Π

𝔼(s,a)∼ρπ [L(π, s, π⋆(s)]
- Train a policy  on datasetπ

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross 2011

Let π⋆ be an expert user
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Interactive Imitation Learning with DAgger

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

Loop:

- Interact in an environment (s, a) ∼ ρπ

- Get Dataset  Di = {(s, π⋆(s)}

- Aggregate dataset D ← D ∪ Di

min
π∈Π

𝔼(s,a)∼ρπ [L(π, s, π⋆(s)]
- Train a policy  on datasetπ

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross 2011

min
π∈Π

𝔼(s,a)∼ρπ [L(π, s, π⋆(s)]

Behavior Cloning 
Performance Gap:

𝒪(ϵH2)

(gap scales quadratic)

DAgger  
Performance Gap:

𝒪(ϵH)

(gap scales linear)

Let π⋆ be an expert user
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Interactive Imitation Learning with DAgger
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Let π⋆ be an expert user

33



Interactive Imitation Learning with DAgger

Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

Loop:
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- Get Dataset  Di = {(s, π⋆(s)}

- Aggregate dataset D ← D ∪ Di

min
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𝔼(s,a)∼ρπ [L(π, s, π⋆(s)]
- Train a policy  on datasetπ

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning, Ross 2011

Let π⋆ be an expert user

34

- If π is not confident:

Active Imitation Learning 
with Noisy Guidance 

[BSD ACL 2020]



Interactive Imitation Learning with DAgger

Warm-up: Supervised learning

ππrefref
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3.Train classifier ππ on D
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 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

Loop:
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min
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Let π⋆ be an expert user
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- If π is not confident:

Active Imitation Learning 
with Noisy Guidance 

[BSD ACL 2020]

Research Question:
How can we remove the need for 
online access to an expert?

Problem:
We need online access to an expert to 
label each state we visit.



Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

Our Approach: DRIL [BSH ICLR 2020]

disagreement regularized imitation learning  

Stay within the expert distribution 

Mimic expert within the expert distribution 

𝔼(s,a)∼ρπ [CU(s, a)] + λDKL(ρπ⋆ | |ρπ)

Train ensemble of polices ΠE = {π1, . . . , πE} on expert data 

DRIL cost can be optimized using any RL algorithm

Uncertainty Cost: CU(s, a) = Varπ∼ΠE
(π(a |s))
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Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D
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Our Approach: DRIL [BSH ICLR 2020]

disagreement regularized imitation learning  

Stay within the expert distribution 

Mimic expert within the expert distribution 

𝔼(s,a)∼ρπ [CU(s, a)] + λDKL(ρπ⋆ | |ρπ)

Train ensemble of polices ΠE = {π1, . . . , πE} on expert data 
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Uncertainty Cost: CU(s, a) = Varπ∼ΠE
(π(a |s))

ΠE = { , , }π1 π2 π3
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Warm-up: Supervised learning

ππrefref

1.Collect trajectories from expert ππrefref

2.Store dataset D = { ( o, ππrefref(o) ) | o ~ ππref ref }

3.Train classifier ππ on D

● Let ππ play the game!

 sometimes called “behavioral cloning”
Image Credit: Hal Daumé III

Our Approach: DRIL [BSH ICLR 2020]

disagreement regularized imitation learning  

Stay within the expert distribution 

Mimic expert within the expert distribution 

𝔼(s,a)∼ρπ [CU(s, a)] + λDKL(ρπ⋆ | |ρπ)

Train ensemble of polices ΠE = {π1, . . . , πE} on expert data 

DRIL cost can be optimized using any RL algorithm

Uncertainty Cost: CU(s, a) = Varπ∼ΠE
(π(a |s))

ΠE = { , , }π1 π2 π3

                 LowCU(s, a) =

                 HighCU(s, a) =
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DRIL
algorithm

- Minimize DKL(ρπ⋆ | |ρπ) using mini-batch of expert data

- Minimize CU(s, a) with the collected samples using RL

Loop:

Train Policy Ensemble ΠE = {π1, . . . , πE} using demonstration data D

Initialize π using behavior cloning 

- Interact in an environment (s, a) ∼ ρπ
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κ = min
𝒰⊆𝒮

maxπ∈Π sups∈𝒰
dπ(s)
dπ*(s)

mins∉𝒰,a∈A VARπ∼ΠE
[π(a |s)]

Behavior cloning 
Loss(π) = ϵ

Theory of DRIL

Performance gap compared

to globally optimal policy  π⋆

J(π⋆) − J( ̂π) ≤ 𝒪 (κϵH)

 problem dependent. 
Depends on environment 

dynamics, expert distribution, 
and uncertainty of ensemble

κ

Concentrability inside of 𝒰

Minimum ensemble variance 
outside of 𝒰
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the covariate shift problem 
Revisiting

DRIL  
Performance Gap:

𝒪(ϵH)

(gap scales linear)

ρπ⋆(s0) =
1
H

ρπ⋆(s1) =
H − 1

H

+1 reward

Start
0 reward

Given an expert policy: π⋆

𝒪(ϵH2)
(gap scales quadratic)

Behavior Cloning 
Performance Gap:

κ = 12 + 𝒪(
1

|ensemble|
)

DRIL  
Performance Gap:

DAgger  
Performance Gap:

𝒪(ϵH)

(gap scales linear)
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Experimental Setup
Atari  

Imitation Learning Benchmark
• Generated demonstration data 

from pre-trained experts


• Then trained DRIL on the 
demonstration data and 
evaluated on true environment 
reward
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Experimental Results
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Impact of our work
extended to LLMs [Coste et al. ICLR 2024]

Reward Model Ensembles Help Mitigate Overoptimization Coste 2024 

52,000 instructions and demonstrations generated from GPT 3.5

Dataset Composition

Alpaca datasets: General instruction fine-tuning dataset incorporating wide range of tasks

Task

What is the capital of France? The capital of France is Paris.

Describe the function of a computer 
motherboard

A computer motherboard is the main circuit 
board in a computer. It is the backbone of …

Example of Instructions 

44



Impact of our work
extended to LLMs [Coste et al. ICLR 2024]

Reward Model Ensembles Help Mitigate Overoptimization Coste 2024 

(a) BoN (b) PPO

Figure 8: Final gold reward model performance achieved by different objectives when optimizing
reward models with varying parameter sizes, but trained with the same dataset containing 25% label
noise.

(a) BoN (b) PPO

Figure 9: Final gold reward model performance achieved by different objectives when optimizing
(44M) reward models trained under varying amounts of data. A label noise ratio of 25% was main-
tained for all dataset sizes.

For UWO, the value of the uncertainty penalty is another hyperparameter. Our results in Figure 12
indicate that most reasonable values of uncertainty penalty actually work well, indicating that there
is potentially no need to tune this hyperparameter.

5.5 EFFECTS OF LABEL NOISE AND UNCERTAINTY PENALTY

Figure 10: Intra ensemble variance for
different optimization objectives under
different levels of noise for PPO.

In Figure 10, we show intra-ensemble variance for an en-
semble of 44M parameter reward models optimized via
UWO and mean optimization objectives using PPO. The
variance among the ensemble members starts at a small
value in the no label noise case, and increases by a rela-
tively small amount during training for UWO. However,
the uncertainty increases by almost 3 times for mean op-
timization during training.

For the case of 25% label noise, the variance starts much
higher and during the course of training, increases by
about 2.5 times for mean optimization. However, the
variance only increases by about 20% for UWO (using
� = 0.1). Further, using a KL penalty of 0.01 results in
a slight reduction in the variance at the end of training.
This hints at the fact that while mean optimization is able
to exploit any reward model that is currently overestimating the reward, the uncertainty penalty in
UWO prevents that - thus resulting in better final performance (as shown in Figure 7) and reduced
over-optimization.

6 DISCUSSION

In this work, we have demonstrated that ensemble-based conservative optimization methods im-
prove performance and are highly effective in combating the overoptimization problem in RLHF. In
particular, our positive results in the setup with 25% label noise are highly encouraging as this setup
better models the real-world RLHF where human annotators often have high disagreement rates
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(a) BoN (b) PPO

Figure 8: Final gold reward model performance achieved by different objectives when optimizing
reward models with varying parameter sizes, but trained with the same dataset containing 25% label
noise.

(a) BoN (b) PPO

Figure 9: Final gold reward model performance achieved by different objectives when optimizing
(44M) reward models trained under varying amounts of data. A label noise ratio of 25% was main-
tained for all dataset sizes.

For UWO, the value of the uncertainty penalty is another hyperparameter. Our results in Figure 12
indicate that most reasonable values of uncertainty penalty actually work well, indicating that there
is potentially no need to tune this hyperparameter.

5.5 EFFECTS OF LABEL NOISE AND UNCERTAINTY PENALTY

Figure 10: Intra ensemble variance for
different optimization objectives under
different levels of noise for PPO.

In Figure 10, we show intra-ensemble variance for an en-
semble of 44M parameter reward models optimized via
UWO and mean optimization objectives using PPO. The
variance among the ensemble members starts at a small
value in the no label noise case, and increases by a rela-
tively small amount during training for UWO. However,
the uncertainty increases by almost 3 times for mean op-
timization during training.

For the case of 25% label noise, the variance starts much
higher and during the course of training, increases by
about 2.5 times for mean optimization. However, the
variance only increases by about 20% for UWO (using
� = 0.1). Further, using a KL penalty of 0.01 results in
a slight reduction in the variance at the end of training.
This hints at the fact that while mean optimization is able
to exploit any reward model that is currently overestimating the reward, the uncertainty penalty in
UWO prevents that - thus resulting in better final performance (as shown in Figure 7) and reduced
over-optimization.

6 DISCUSSION

In this work, we have demonstrated that ensemble-based conservative optimization methods im-
prove performance and are highly effective in combating the overoptimization problem in RLHF. In
particular, our positive results in the setup with 25% label noise are highly encouraging as this setup
better models the real-world RLHF where human annotators often have high disagreement rates
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Uncertainty-Weighted Optimization (UWO):  

UWO works by penalizing the policy for 
generating responses for which there is high 
disagreement among reward models within the 
ensemble
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Summary

- Interacting in an environment can help address covariate shift issues


- DRIL has theoretical guarantees in some settings


- DRIL empirically performs better than Behavior Cloning
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Formalize the imitation 
learning problem

?

objective alignment issue

C

47



Pre-Training Fine-Tuning Interactive Fine-Tuning

Uncertainty Reward
?

How can  
interaction help?

Formalize the imitation 
learning problem

How can we design 
interactive learning 
algorithms specific  

to LLMs?

objective alignment issue

C

48



Reinforcement Learning
for text-generation 

: Twoa0 : roadsa1 : divergeda2 : toa3 : separatea4 :pathsa5

States:
Actions: words from our vocabulary

Horizon:  max generation lengthH

Initial State:  a prompts0 ∼ D

Reward:  scoreR(s)
Transition: P(s′￼|s, a)

Policy: π( ⋅ |s)

S1 = S0 ⊕ a0S2 = S1 ⊕ a1

S1 = S0 ⊕ a0

<Prompt>

s0 S2 = S1 ⊕ a1 …… …
R(s6)

Goal: Learn policy  to maximize rewardπ
S6 = S0 ⊕ < a0, a1, a2, a3, a4, a5 >

S6 = S5 ⊕ a4…
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Reinforcement Learning
for text-generation 

: Twoa0 : roadsa1 : divergeda2 : toa3 : separatea4 :pathsa5

States:
Actions: words from our vocabulary

Horizon:  max generation lengthH

Initial State:  a prompts0 ∼ D

Reward:  scoreR(s)
Transition: P(s′￼|s, a)

Policy: π( ⋅ |s)

S1 = S0 ⊕ a0

<Prompt>

s0 S2 = S1 ⊕ a1 …… …
R(s6)

S6 = S5 ⊕ a4…
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Is reinforcement learning (not) for 
natural language processing?: 
Benchmarks, baselines, and building 
blocks for natural language policy 
optimization  
[RABHSBHC ICLR 2023]

NLP Metric The first benchmark comparing interactive 
fine-tuning with RL and supervised fine-

tuning across a range of NLP tasks.

S6 = S0 ⊕ < a0, a1, a2, a3, a4, a5 >



Reinforcement Learning
for text-generation 

<Prompt> : Twoa0 : roadsa1 : divergeda2 : toa3 : separatea4 :pathsa5

States:
Actions: words from our vocabulary

Horizon:  max generation lengthH

Initial State:  a prompts0 ∼ D

Reward:  scoreR(s)
Transition: P(s′￼|s, a)

Policy: π( ⋅ |s)

S1 = S0 ⊕ a0

from an expert       π⋆Given Preference dataset
Goal: Learn policy  using this datasetπ

s0 S2 = S1 ⊕ a1 …… …

Unknown Reward:

R(s6)
S6 = S5 ⊕ a4…

S6 = S0 ⊕ < a0, a1, a2, a3, a4, a5 >
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Reinforcement Learning From Human Feedback

70Responses from  πSFT

Human Labeler 
rank outputs

7 0>

D = D ∪ {(τ1, τ2, s0)}Aggregate

πSFT = arg min
π∈Π

𝔼(s,a)∼ρπ⋆ [L(π, s, a)]
1. Supervised Fine-Tuning (SFT)

Prompt  s0 ∼ D
Calculate the median 

number [2, 3, 7, 8, 10]

2. Collect preferences data

for example using logistic regression 

̂r = arg min
r ∑

D

log σ(r(τ1) − r(τ2))

3. Learn a preference reward function

𝔼τ∼ρπ [ ̂r(τ)] + λDKL(π | |πSFT)

4. Interactive Fine-Tuning with RL
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Reinforcement Learning From Human Feedback

Pre-Training Fine-Tuning Interactive Fine-Tuning

Human Win rate 
against SFT 175B

Model Size

Long Ouyang et al.

Training language models to follow 
instructions with human feedback

OpenAI 2022 
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Reinforcement Learning From Human Feedback

Pre-Training Fine-Tuning Interactive Fine-Tuning

Human Win rate 
against SFT 175B

Model Size

Long Ouyang et al.

Training language models to follow 
instructions with human feedback

OpenAI 2022 

Problem:

- RL algorithms are complex and 
unstable, making them challenging to 
tune effectively.

- Text generation is a LARGE 
combinatorial search problem.
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Pre-Training Fine-Tuning Interactive Fine-Tuning

Preference Reward

How can  
interaction help?

Formalize the imitation 
learning problem

How can we design 
interactive learning 
algorithms specific  

to LLMs?

objective alignment issue

C
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Reset Property

<Prompt> Two roads diverged to separate paths

1. Sample a prompt from D

Reset allows us to rollout a 
policy from partial sentences

?

2. Sample a generation from π

̂r(sH) + γVπ(sH+1)
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from

Reset Property

<Prompt> Two roads diverged to separate paths

1. Sample a prompt from D

Reset allows us to rollout a 
policy from partial sentences

?

2. Sample a generation from π

the street

Transition: P(s′￼|s, a) Deterministic

̂r(sH) + γVπ(sH+1)

̂r(sH) + γVπ(sH+1)
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rollout  π

from
rollin π

Reset Property

<Prompt> Two roads diverged

1. Sample a prompt from D

Reset allows us to rollout a 
policy from partial sentences

?

2. Sample a generation from π

the street

Transition: P(s′￼|s, a) Deterministic

̂r(sH) + γVπ(sH+1)
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we do not want to 
move too far from  πSFT

rollout  π

from
rollin π

Reset Property

<Prompt> Two roads diverged

1. Sample a prompt from D

Reset allows us to rollout a 
policy from partial sentences

?

2. Sample a generation from π

the street

Transition: P(s′￼|s, a) Deterministic

to separate paths

𝔼τ∼ρπ [ ̂r(τ)] + λDKL(π | |πSFT)

̂r(sH) + γVπ(sH+1)

̂r(sH) + γVπ(sH+1)
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rollout  πrollin π

• Samples prompts 

• Scores action with   
• Intuition: Receive feedback on partial generations 

s0 ∼ D
̂r + γVπSFT

PPO (RL algorithm)

AggreVaTeD 

Approaches

rollout  πSFTrollin π

• Does not take advantage of problem specific structure 

• Samples prompts 

• Scores action with 

s0 ∼ D
̂r + γVπ

PPO++

rollout  πrollin πSFT

PPO++[CBRMS Instruction Workshop 2023]

rollout  π
Proximal Policy Optimization, John Schulman et al., 2017
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction, Wen Sun et al. ICML 2017
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rollout  πrollin π

• Samples prompts 

• Scores action with   
• Intuition: Receive feedback on partial generations 

s0 ∼ D
̂r + γVπSFT

PPO (RL algorithm)

AggreVaTeD 

Approaches

rollout  πSFTrollin π

• Does not take advantage of problem specific structure 

• Samples prompts 

• Scores action with 

s0 ∼ D
̂r + γVπ

PPO++

rollout  πrollin πSFT

PPO++

rollout  π
Proximal Policy Optimization, John Schulman et al., 2017
Deeply AggreVaTeD: Differentiable Imitation Learning for Sequential Prediction, Wen Sun et al. ICML 2017

PPO++

rollout  πrollin πSFT

PPO++

rollout  π

• Samples prompts  
• Scores actions with 

• Intuition: Richer initial state distribution

s0 ∼ βρπSFT + (1 − β)D
π

PPO++

rollout  πrollin πref

PPO++[CBRMS Instruction Workshop 2023]

rollout  πrollin πSFT

• Samples prompts  
• Scores actions with 

• Intuition: Richer initial state distribution

s0 ∼ βρπSFT + (1 − β)D
̂r + γVπ

ρπSFT
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Theory of PPO++

Approximately Optimal Approximate Reinforcement Learning Kakade and Langford 2002

Let  be a high quality policy covered by π⋆ πSFT

Performance gap

Assume bound density ratio and 
 provides coverage for  πSFT π⋆

𝔼s∼βρπSFT+(1−β)D [max
a

Aπt(s, a)] ≤ ϵ

Assume that one-step local 
improvement over  is small πt

J(π⋆) − J(πt) ≤ O (H2 max
s ( dπ⋆(s)

dπSFT(s) ) ϵ)
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Experimental Setup

Learning to summarization from human feedback Stiennon et al. 2017

- 210K Prompts total

- 117K Prompts with Human Labels 
- 93K Prompts with Human Preference Labels

Dataset Composition

Given a reddit post, write a TL;DR (short summary).

Task Statement
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Experimental Results
Uncertainty of a model at predicting 

the ground truth summariesPublished as a conference paper at ICLR 2024

Algorithms Perplexity GPT4 Win Rate
(#) (")

SFT 14.09 29.5%

SFT+PPO 14.87 60.7%
SFT+PPO++ 13.42 64.4%
SFT+AggreVaTeD 13.53 54.12%

Table 2: TL;DR Summarization Results: We report the mean over 1 seed. Our RM Score is under
our trained preference reward model and the Win Rate is evaluated by Llama2-13B-Chat. We use
SFT+nucleus as ⇡g . We also report Best-of-8 results with our trained policies.
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Figure 3: We investigate the reward optimization, kl-constriant, and fluency trade-off in our TL;DR
summarization task. The dashed line represents our SFT policy’s performance across each metric.
Both PPO++ and AggreVaTeD learn a policy that has a better trade-off than PPO.

inference on our trained policies, we see that PPO++ improves even more beyond PPO. Notably,
with or without best-of-N procedure, PPO++ outperforms PPO on all metrics.

Supporting our justification from Section 5, AggreVaTeD improves beyond our guide policy,
providing an alternative as a warm-starting methodology to warm-starting with SFT. PPO++, on the
other hand, is better than or competitive to our RL baseline demonstrating a simple, yet powerful
alternative to PPO as the RL procedure. Even in practice, we observe the benefit of restarting from an
initial state distribution that better covers an optimal policy’s state distribution. The combination of
these two, D2LOLS, achieves the best of both worlds and fully leverages the capabilities of utilizing a
guide policy.

Reward Optimization Tradeoff In Figure 3 we evaluate how well RLGF algorithms trade-off
optimizing the reward while minimizing the perplexity and kl-constraint

p
KL. For fair comparisons,

we kept � and ⌘ the same across all algorithms. For both plots, the top right corner indicates the
policy has both high reward and low perplexity and low divergence from ⇡0. For each algorithm
we plot 5 checkpoints ranging from 20 to 100 iterations.PPO++ mostly matches or has higher reward
than PPO while maintaining a lower perplexity. Separately, AggreVaTeD trade-offs reward for
perplexity, and has comparable reward scores as PPO while drastically reducing its perplexity. For
the kl-constraints plot on the left of Figure 3 we see that although PPO has a set of points with high
reward, most of these points also have high KL divergences. Whereas, a subset of PPO++ matches
or has higher reward than PPO while having a lower kl-constraint.
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Rafailov et al. 2023 conducted human 
study showing alignment between 

GPT4 and Human preference

Experimental Results

Published as a conference paper at ICLR 2024

Algorithms Perplexity GPT4 Win Rate
(#) (")

SFT 14.09 29.5%

SFT+PPO 14.87 60.7%
SFT+PPO++ 13.42 64.4%
SFT+AggreVaTeD 13.53 54.12%

Table 2: TL;DR Summarization Results: We report the mean over 1 seed. Our RM Score is under
our trained preference reward model and the Win Rate is evaluated by Llama2-13B-Chat. We use
SFT+nucleus as ⇡g . We also report Best-of-8 results with our trained policies.
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Figure 3: We investigate the reward optimization, kl-constriant, and fluency trade-off in our TL;DR
summarization task. The dashed line represents our SFT policy’s performance across each metric.
Both PPO++ and AggreVaTeD learn a policy that has a better trade-off than PPO.

inference on our trained policies, we see that PPO++ improves even more beyond PPO. Notably,
with or without best-of-N procedure, PPO++ outperforms PPO on all metrics.

Supporting our justification from Section 5, AggreVaTeD improves beyond our guide policy,
providing an alternative as a warm-starting methodology to warm-starting with SFT. PPO++, on the
other hand, is better than or competitive to our RL baseline demonstrating a simple, yet powerful
alternative to PPO as the RL procedure. Even in practice, we observe the benefit of restarting from an
initial state distribution that better covers an optimal policy’s state distribution. The combination of
these two, D2LOLS, achieves the best of both worlds and fully leverages the capabilities of utilizing a
guide policy.

Reward Optimization Tradeoff In Figure 3 we evaluate how well RLGF algorithms trade-off
optimizing the reward while minimizing the perplexity and kl-constraint

p
KL. For fair comparisons,

we kept � and ⌘ the same across all algorithms. For both plots, the top right corner indicates the
policy has both high reward and low perplexity and low divergence from ⇡0. For each algorithm
we plot 5 checkpoints ranging from 20 to 100 iterations.PPO++ mostly matches or has higher reward
than PPO while maintaining a lower perplexity. Separately, AggreVaTeD trade-offs reward for
perplexity, and has comparable reward scores as PPO while drastically reducing its perplexity. For
the kl-constraints plot on the left of Figure 3 we see that although PPO has a set of points with high
reward, most of these points also have high KL divergences. Whereas, a subset of PPO++ matches
or has higher reward than PPO while having a lower kl-constraint.
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 Winrate Prompt Template:

Which of the following summaries does a 
better job of summarizing the most important 
points in the given forum Post? FIRST 
provide a one-sentence comparison of the 
two summaries, explaining which you prefer 
and why. SECOND, on a new line, state only 
"A" or "B" to indicate your choice.


Post: <Post>

A: <TLDR A>

B: <TLDR B>
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Summary

- Designing RL algorithms specific for LLMs can improve performance


- Resetting is a special property of MDPs for LLMs


- PPO++ simple algorithm that use reset
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Future Work
• Imitation Learning [1, 2] 


• Imitation Learning with a Computational Oracle [6, 7, 8, 12]


• Imitation Learning with Suboptimal Data

1. Disagreement-Regularized Imitation Learning…………………………………………………………..

2. Adversarial Imitation Learning via Boosting……………………………………………………………..

3. Is reinforcement learning (not) for natural language processing?……………………………………..

4. Learning to Generate Better Than Your LLM…………………………………………………………….

5. Policy-Gradient Training of Language Models for Ranking…………………………………………….

6. Non-Monotonic Text Generation…………………………………………………………………………..

7. Active Imitation Learning with Noisy Guidance………………………………………………………….

8. Interactive Text Generation…………………………………………………………………………………

9. Reinforcement Learning with Convex Constraints………………………………………………………

10.Constrained episodic reinforcement learning in concave-convex and knapsack settings…………

11.Ranking with Long-Term Constraints……………………………………………………………………..

12.lilGym: Natural Language Visual Reasoning with Reinforcement Learning…………………………..

[BSH ICLR 2020]

[CSHBS ICLR 2024]

[RABHSBHC ICLR 2023]

[CBRMS Instruction Workshop 2023]

[GCCBJ FMDM Workshop 2023]

[WBDC ICLR 2019]

[BSD ACL 2020]

[FGPBCZGD EMNLP 2024]

[MBDDS NeurIPS 2019]

[BDLMSSS NeurIPS 2020]

[BFDJ WSDM 2024]

[WBKA ACL 2022]
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Assumes access to optimal 
preference data

Assumes access to 
optimal demonstration 

data

Future Work
Learning from Suboptimal Data

Pre-Training Fine-Tuning Interactive Fine-Tuning

Preference Reward

• Develop fine-tuning algorithms that can learn from suboptimal data.


• Develop reward functions that can learn from suboptimal preferences.
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Coactive Learning  
[ABCJ Under Review 2024] Future Work

Learning from Suboptimal Data

Pre-Training Fine-Tuning Interactive Fine-Tuning

Preference Reward

• Develop fine-tuning algorithms that can learn from suboptimal data.


• Develop reward functions that can learn from suboptimal preferences.
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Future Work
• Reinforcement Learning from Human Feedback [3, 4] 


• Constrained Reinforcement Learning [9, 10, 11]

1. Disagreement-Regularized Imitation Learning…………………………………………………………..

2. Adversarial Imitation Learning via Boosting……………………………………………………………..

3. Is reinforcement learning (not) for natural language processing?……………………………………..

4. Learning to Generate Better Than Your LLM…………………………………………………………….

5. Policy-Gradient Training of Language Models for Ranking…………………………………………….

6. Non-Monotonic Text Generation…………………………………………………………………………..

7. Active Imitation Learning with Noisy Guidance………………………………………………………….

8. Interactive Text Generation…………………………………………………………………………………

9. Reinforcement Learning with Convex Constraints………………………………………………………

10.Constrained episodic reinforcement learning in concave-convex and knapsack settings…………

11.Ranking with Long-Term Constraints……………………………………………………………………..

12.lilGym: Natural Language Visual Reasoning with Reinforcement Learning…………………………..

[BSH ICLR 2020]

[CSHBS ICLR 2024]

[RABHSBHC ICLR 2023]

[CBRMS Instruction Workshop 2023]

[GCCBJ FMDM Workshop 2023]

[WBDC ICLR 2019]

[BSD ACL 2020]

[FGPBCZGD EMNLP 2024]

[MBDDS NeurIPS 2019]

[BDLMSSS NeurIPS 2020]

[BFDJ WSDM 2024]

[WBKA ACL 2022]
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Designing RL algorithms specific 
for LLMs can improve performance


 

Future Work
Reinforcement Learning from Human Feedback

• Continue to explore RL algorithms specialized for NLP systems.

• Fast Simulation

• Deterministic Environment

• Demonstration Data

• Trajectory-Level Rewards

Pre-Training Fine-Tuning Interactive Fine-Tuning

Preference Reward

[CZOBMLS Under Review 2024]
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Dataset Reset Policy Optimization 
[CZOBMLS Under Review 2024]


 

Future Work
Reinforcement Learning from Human Feedback

Pre-Training Fine-Tuning Interactive Fine-Tuning

Preference Reward
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rollout  π

from
rollin τ

<Prompt> Two roads diverged

1. Sample a prompt and response  from τ D

2. Sample a generation from π

the street
̂r(sH) + γVπ(sH+1)

Dataset Reset Policy Optimization…………………………………………………………..……………………….. [CZOBMLS Under Review 2024]



• Imitation Learning [1, 2, 6, 7, 8, 12]


• Reinforcement Learning [3, 4, 5, 9, 10, 11]

Natural Language Processing [3, 4, 6, 7, 8, 12]     


Information Retrieval [5, 11]   


Classic Control [2, 9, 10]   


Video Games [1]


?   
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2. Adversarial Imitation Learning via Boosting……………………………………………………………..

3. Is reinforcement learning (not) for natural language processing?……………………………………..

4. Learning to Generate Better Than Your LLM…………………………………………………………….

5. Policy-Gradient Training of Language Models for Ranking…………………………………………….

6. Non-Monotonic Text Generation…………………………………………………………………………..

7. Active Imitation Learning with Noisy Guidance………………………………………………………….

8. Interactive Text Generation…………………………………………………………………………………

9. Reinforcement Learning with Convex Constraints………………………………………………………

10.Constrained episodic reinforcement learning in concave-convex and knapsack settings…………

11.Ranking with Long-Term Constraints……………………………………………………………………..

12.Successor feature sets: Generalizing successor representations across policies…………………..
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[CBRMS Instruction Workshop 2023]
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[BMG AAAI 2021]
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Future Work
PG-Rank 

[GCCBJ FMDM Workshop 2023]
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Pre-Training Fine-Tuning Interactive Fine-Tuning

Retrieval ModelRetrieval Augmented Generation

<Prompt> Two roads diverged

1. Sample a prompt from D

2. Query a retrieval model

Document 1 Document 2

 rankingπθ 3. Sample a generation from π

̂r(sH)

Policy-Gradient Training of Language Models for Ranking……………………………………………. [GCCBJ FMDM Workshop 2023]




Thank You!

Wen Sun Mikael Henaf Rajkumar Ramamurthy Dipendra Misra Jonathan D. Chang

Thorsten Joachims Aaron Tucker Adam Cahall Yoav Artzi Anne Wu
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