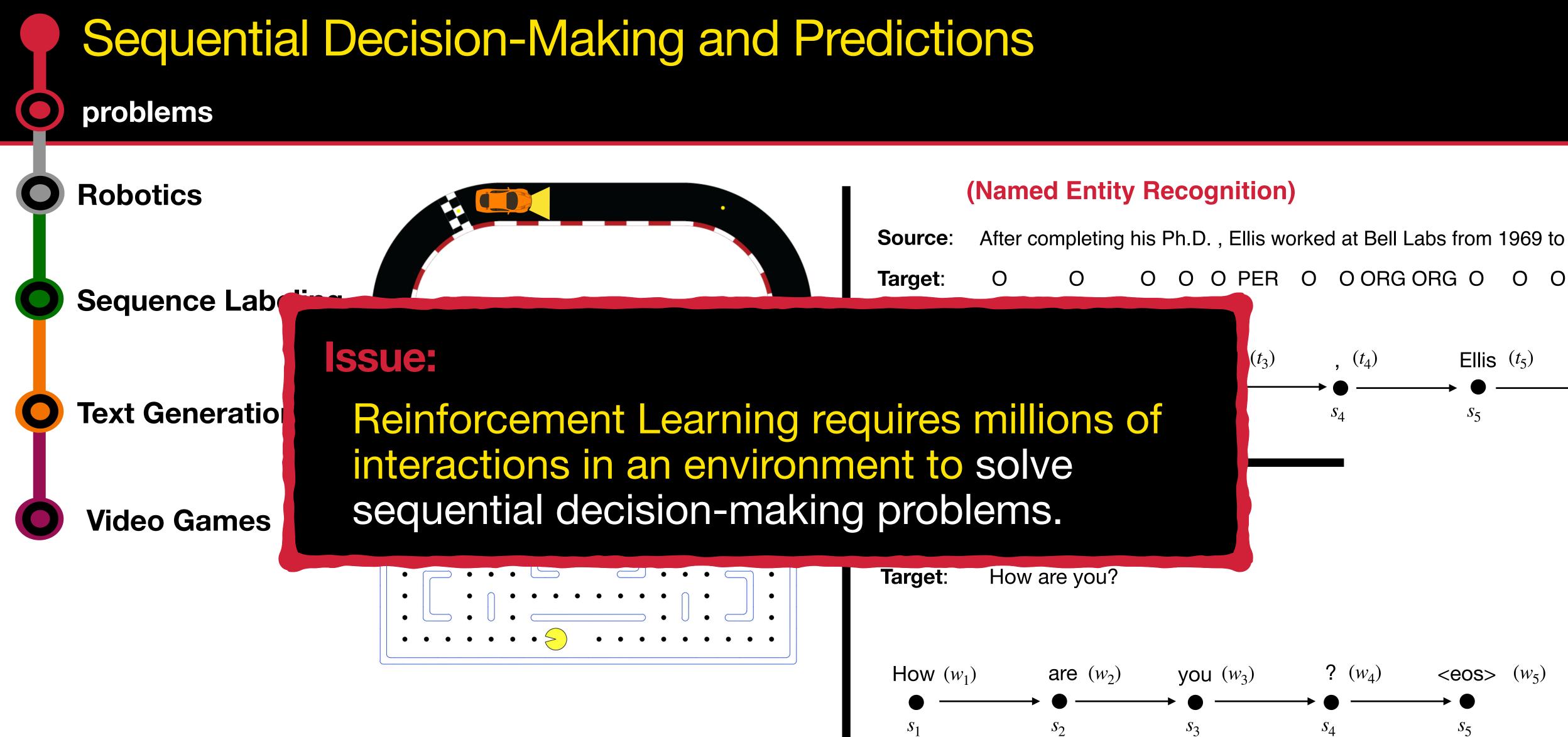
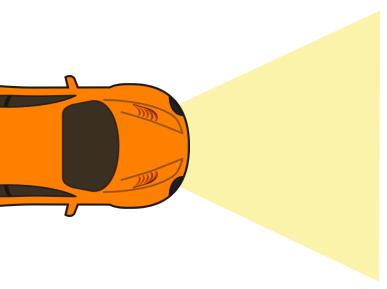
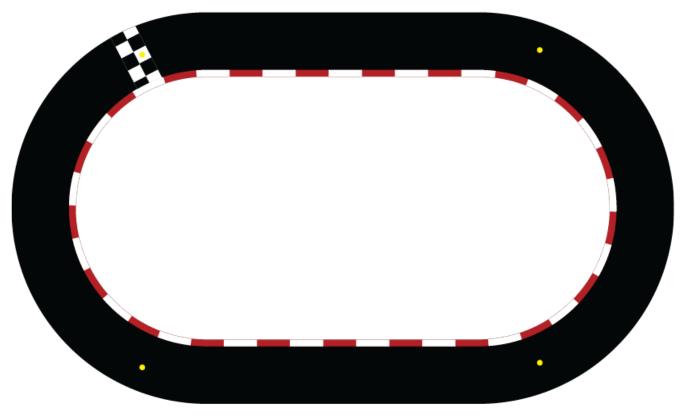
EXPERT-IN-THE-LOOP FOR SEQUENTIAL DECISION-MAKING AND PREDICTIONS

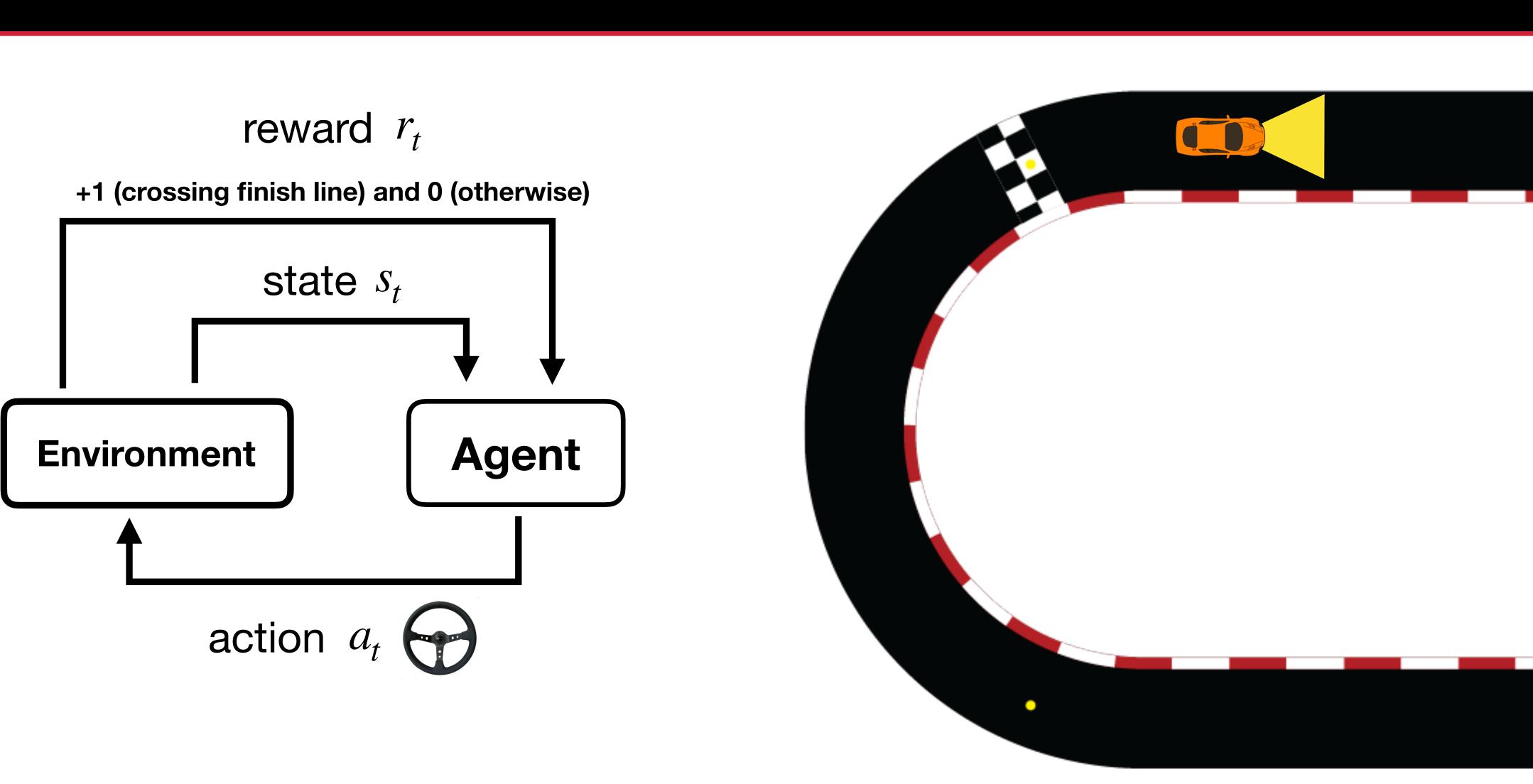
Kianté Brantley | Postdoctoral Scholar | Cornell University



Environment

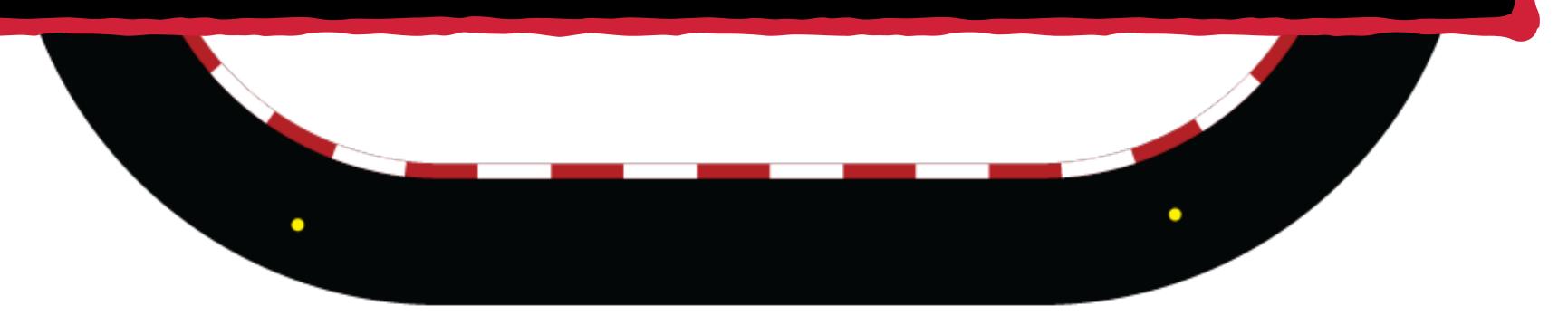


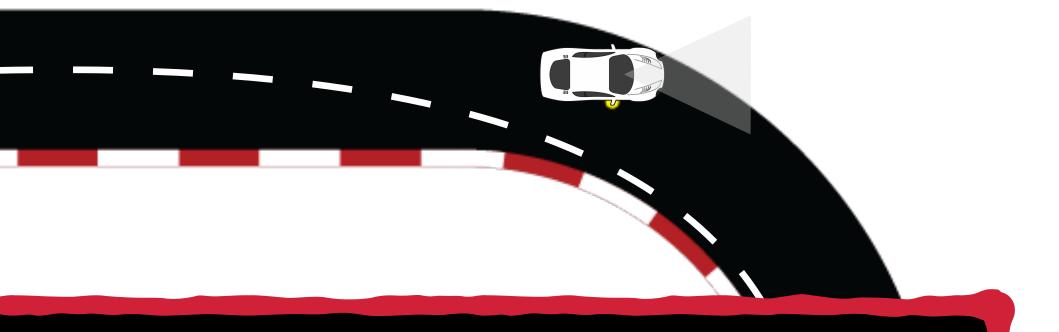




ssue.

The sequence of actions needed to receive a reward is long.





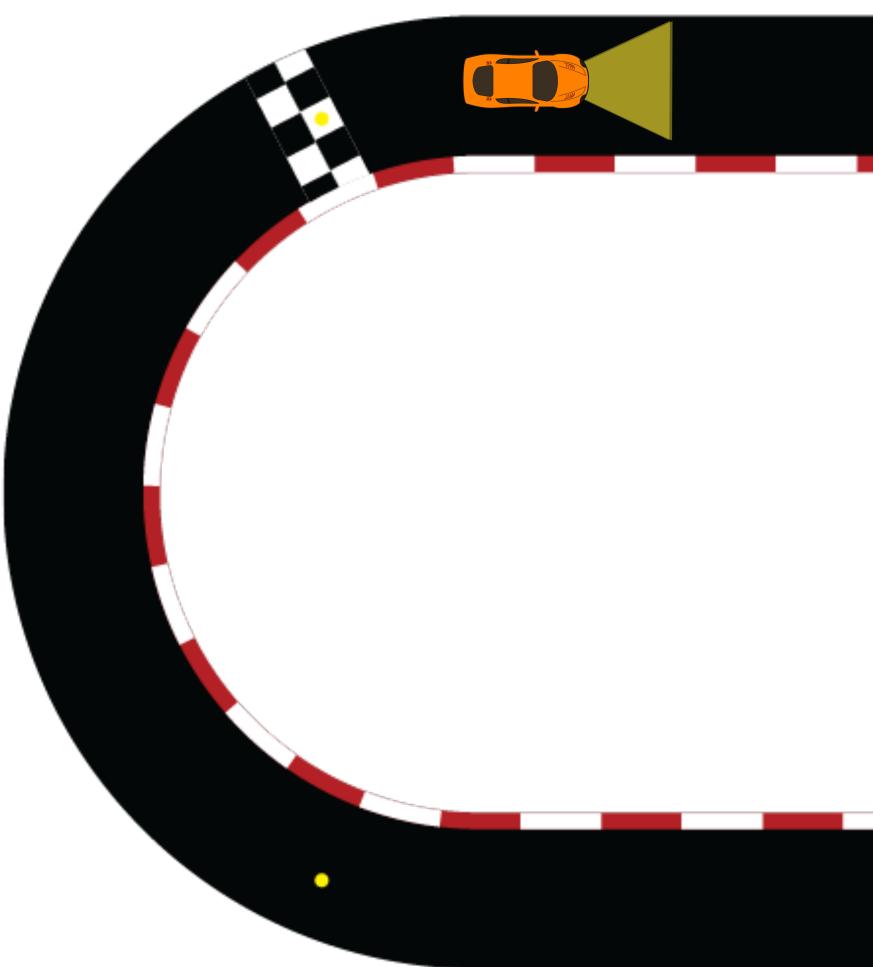
- state
- actions

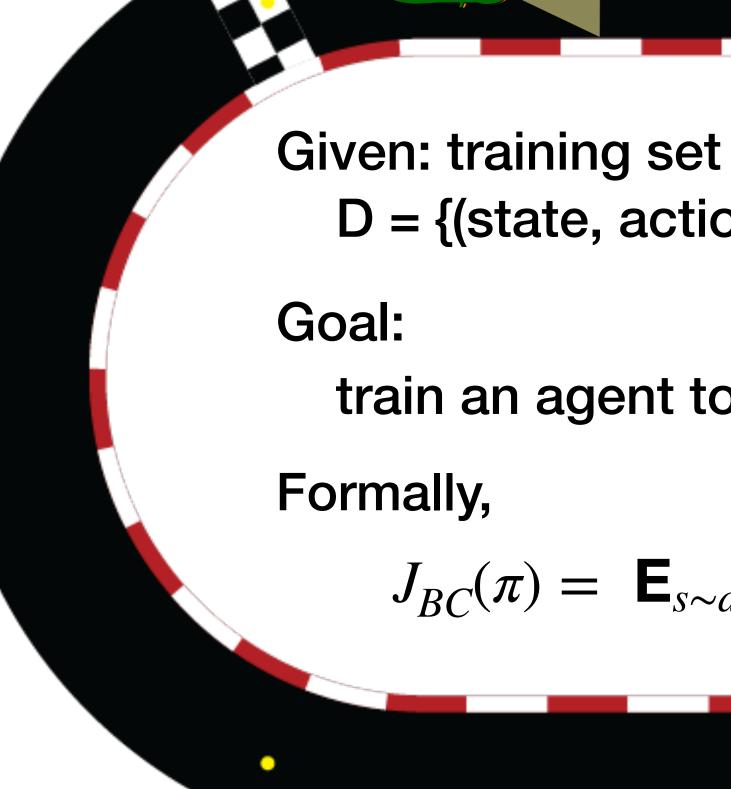
Training set:

D = {(state, actions)} from expert π^*

Goal:

learn an agent $\pi_{\theta}(s) \rightarrow a$





D = {(state, actions)} from expert π^*

train an agent to using supervised learning

•

$$_{s\sim d_{\pi^*}}\left[\ell(\pi_{\theta}(s),\pi^*(s))\right]$$

Imitation learning with Behavior Cloning

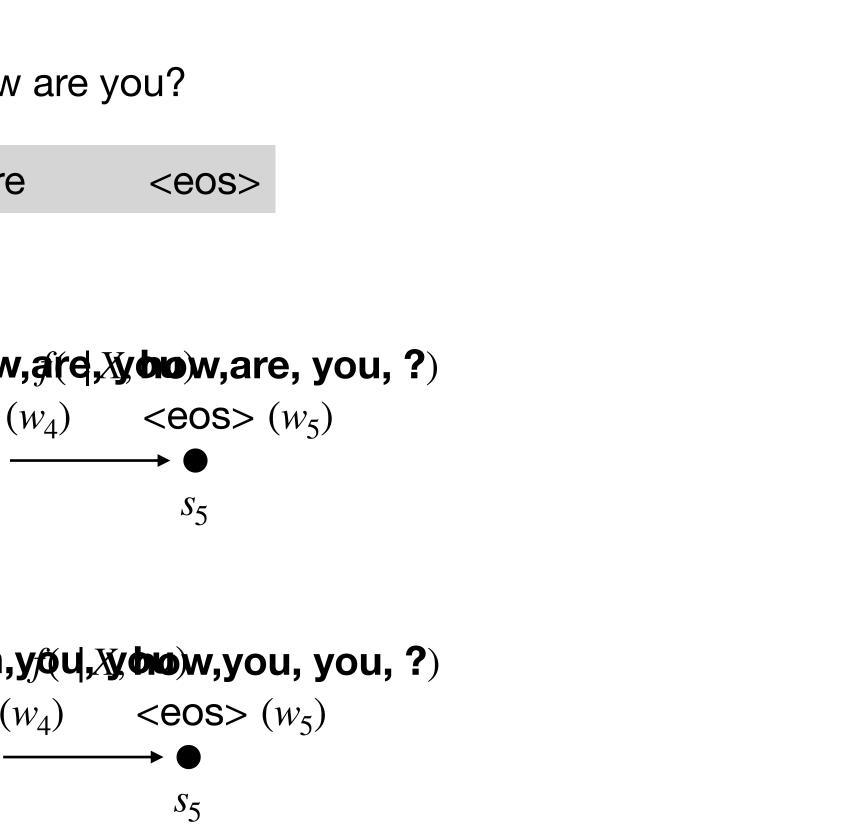
covariate shift

Issue: The assumptions underlying supervised learning no longer hold, resulting in a covariate shift issue. гоппану, $J_{BC}(\pi) = \mathbf{E}_{s \sim d_{\pi^*}} \left[\ell(\pi_{\theta}(s), \pi^*(s)) \right]$

Supervised Learning		Behavior Cloning	
Train	$(x, y) \sim D$	$(s,a) \sim d_{\pi^*}$	
Test	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$	

		<mark>ctured</mark> re bias in n		ction v	vith E
	• Task: Word Descrambling Text-Generation How are you ?				
		Source:		Target	t: How are
		you	how	?	are
		context: pr	evious grour	nd truth word	s
	Train			· X, how,∕are you(w ₃)	U V
		•	\rightarrow \bullet s_2	<i>s</i> ₃	→ •
	context: previous model predicted words				
C	Test		-	<i>X</i> , can,y (ομ) you(w ₃)	(, can,yốu ? (w ₄)
		<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	s ₄

Behavior Cloning



Structured Prediction with Behavior Cloning

exposure bias in nlp

Task: Word Descrambling Text-Generation

Issue:

The assumptions underlying supervised learning no longer hold, resulting in the covariate issue/exposure bias.

Supervised Learning		Behavior Clonir
Train	$(x, y) \sim D$	$(s,a) \sim d_{\pi^*}$
Test	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$

ng

Talk Overview

Background

- Behavior Cloning
- Interactive Imitation Learning with Dagger (Ross et al. 2011)

Modern Imitation Learning

- Uncertainty-Based Learning (ICLR' 20)
- An Empirical Study of Imitation Learning (Under Review)

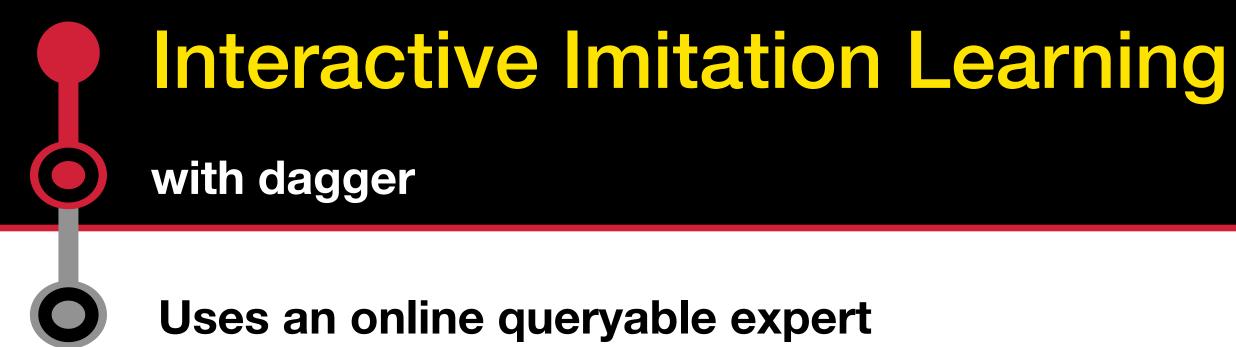
Talk Overview

Background

- Behavior Cloning
- Interactive Imitation Learning with Dagger (Ross et al. 2011)

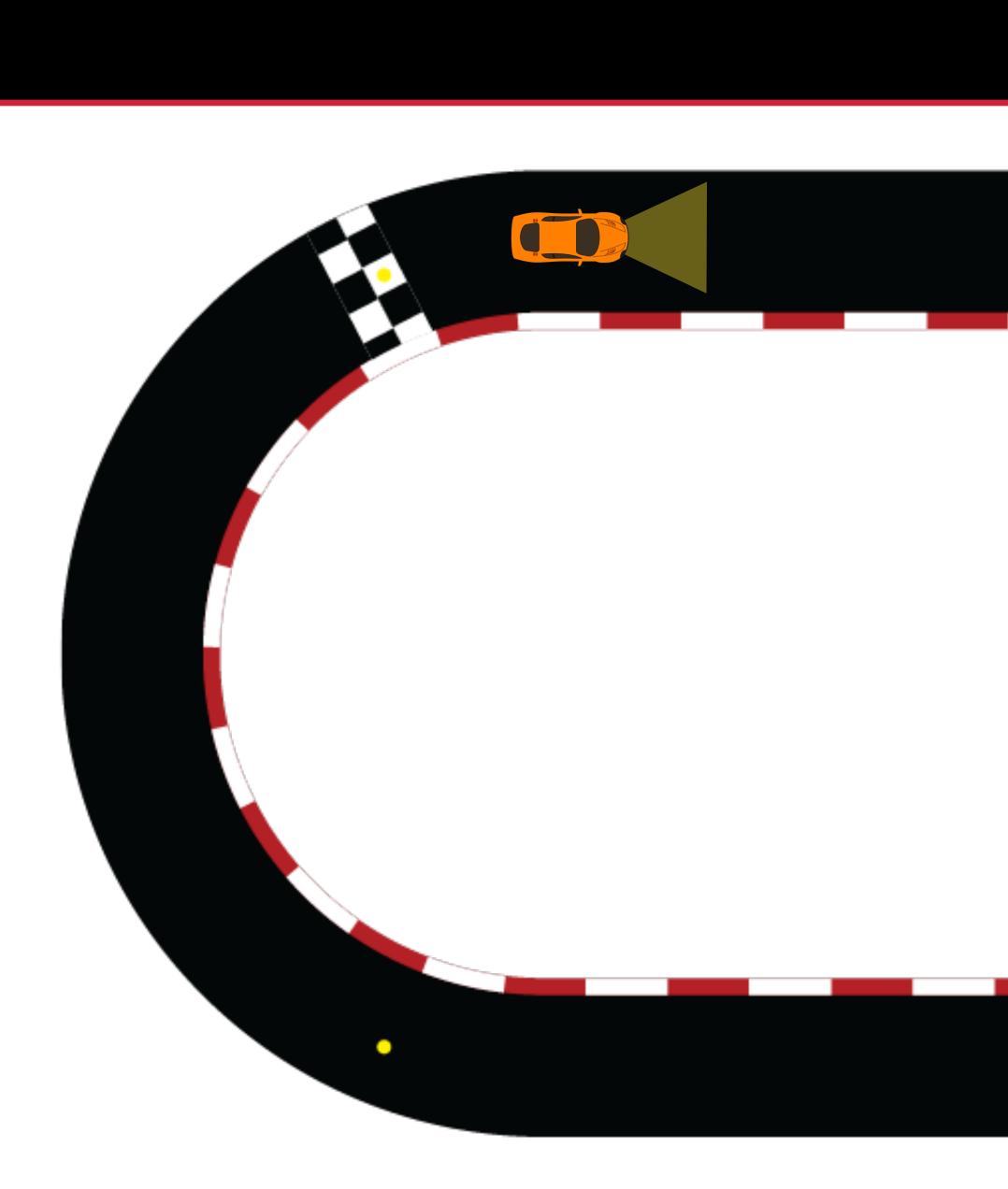
Research Question

Can we design algorithms to deal with the exposure bias/covariate shift issue?



Initialize Dataset D Initialize $\hat{\pi}_1$ For i = 1 to N do $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$ Sample T-step trajectory from π_i Get dataset $D_i = \{(s, \pi^*(s))\}$ Aggregate dataset $D \leftarrow D \cup D_i$ Train classifier $\hat{\pi}_{i+1}$ on D

[Stéphane Ross, Geoff J. Gordon, and J. Andrew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.]



Interactive Imitation Learning

with dagger

Uses an online queryable expert

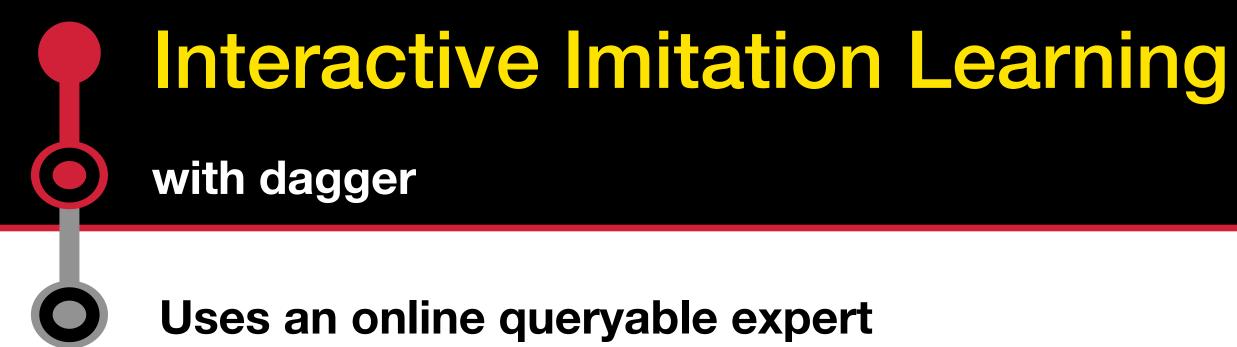
Advantage:

The agent can learn from its own state distribution.

Supervised Learning		DAgger
Train	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$
Test	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$

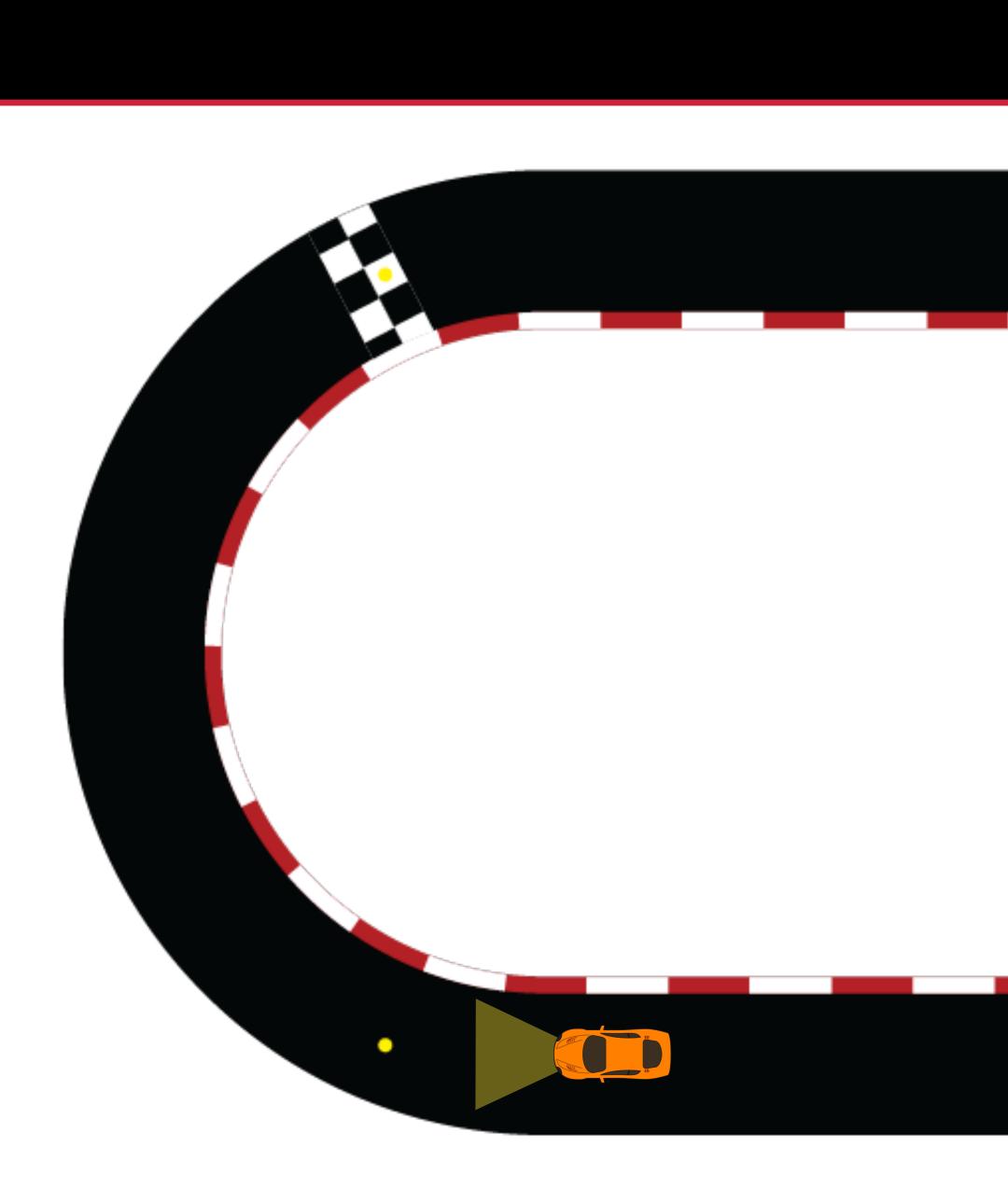
Aggregate dataset $D \leftarrow D \cup D_i$ Train classifier $\hat{\pi}_{i+1}$ on D

[Stéphane Ross, Geoff J. Gordon, and J. Andrew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.]



Initialize Dataset D Initialize $\hat{\pi}_1$ For i = 1 to N do $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$ **Sample T-step trajectory from** Get dataset $D_i = \{(s, \pi^*(s))\}$ Aggregate dataset $D \leftarrow D \cup D_i$ Train classifier $\hat{\pi}_{i+1}$ on D

[Stéphane Ross, Geoff J. Gordon, and J. Andrew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.]



Interactive Imitation Learning

with dagger

Uses an online queryable expert

Advantage:

The agent can learn from its own state distribution.

Supervised Learning		DAgger
Train	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$
Test	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$

Aggregate dataset $D \leftarrow D \cup D_i$ Train classifier $\hat{\pi}_{i+1}$ on D

[Stéphane Ross, Geoff J. Gordon, and J. Andrew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.]

Interactive Imitation Learning

with dagger

Uses an online queryable expert

Advantage:

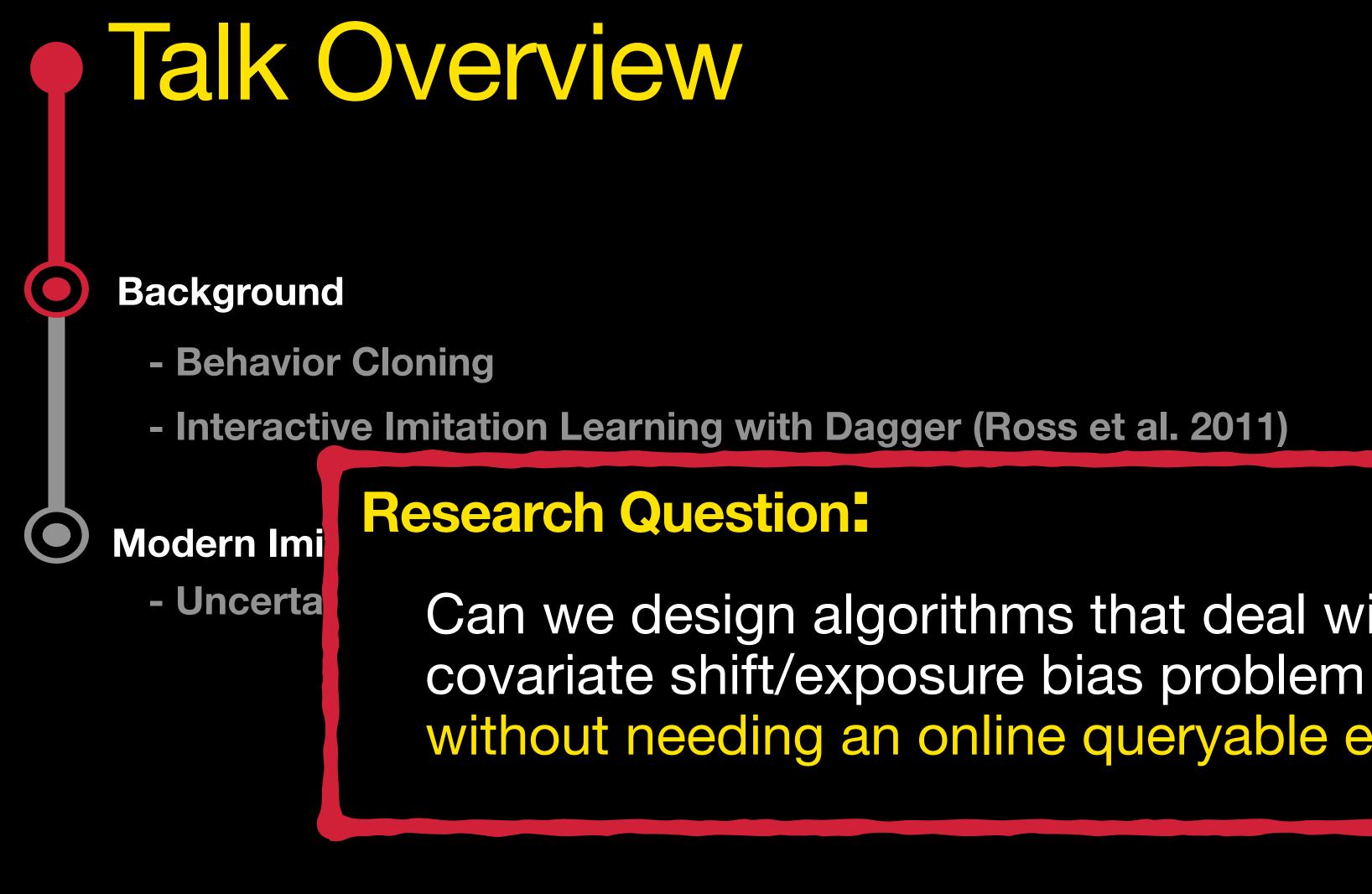
The agent can learn from its own state distribution.

Supervised Learning		DAgger
Train	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$
Test	$(x, y) \sim D$	$(s,a) \sim d_{\pi}$

Disadvantage:

We query an online expert at every state visited to ask for a label (i.e. annotations in NLP).

17 [Stéphane Ross, Geoff J. Gordon, and J. Andrew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.]

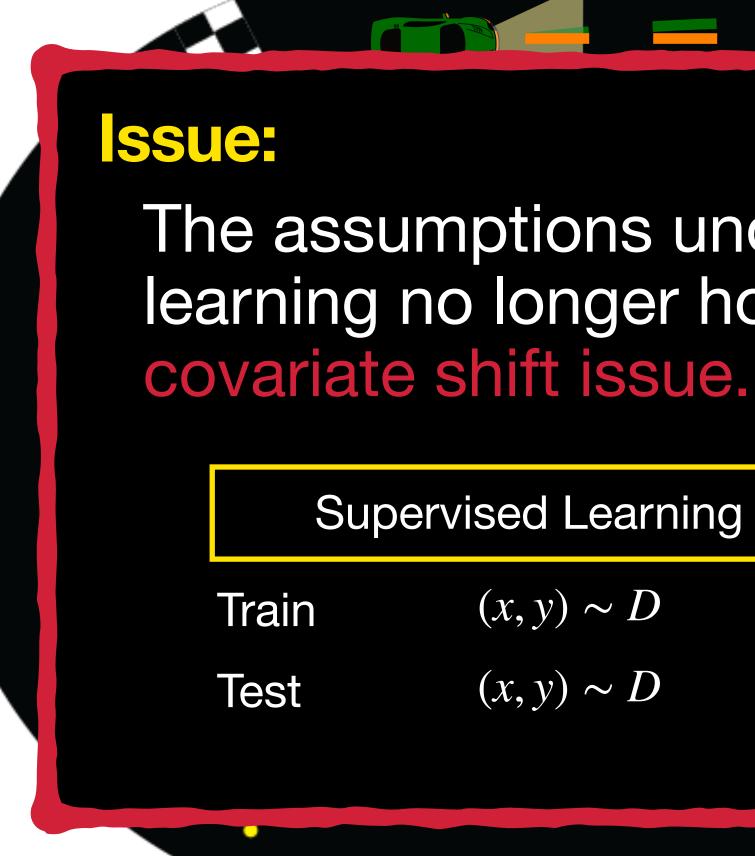


Can we design algorithms that deal with the without needing an online queryable expert?

Disagreement Regularized Imitation Learning

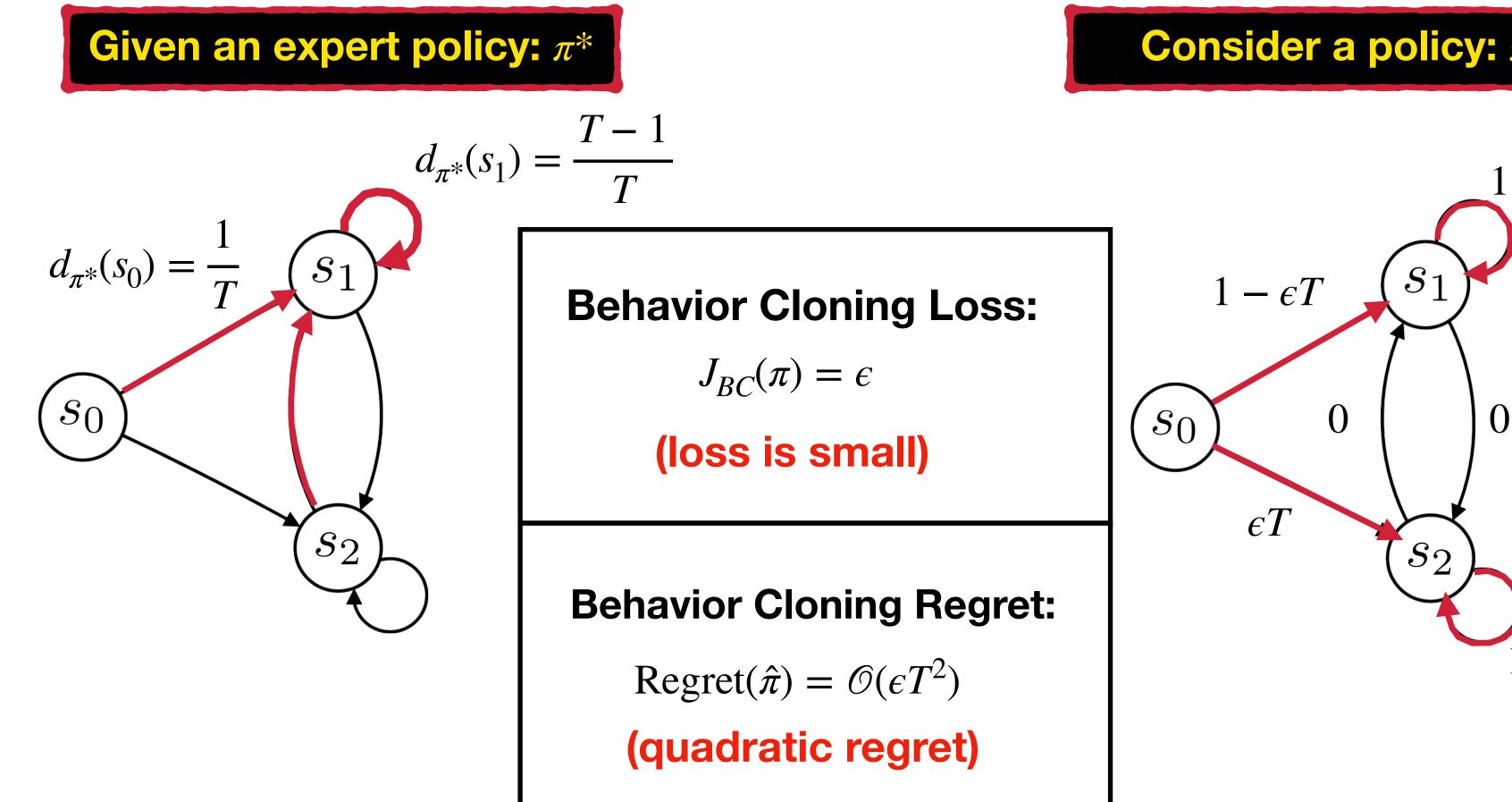
Kianté Brantley,¹ Wen Sun,³ Mikael Henaff² ¹ University of Maryland, ² Facebook Al Research ³ Cornell University

Imitation Learning with Behavior Cloning



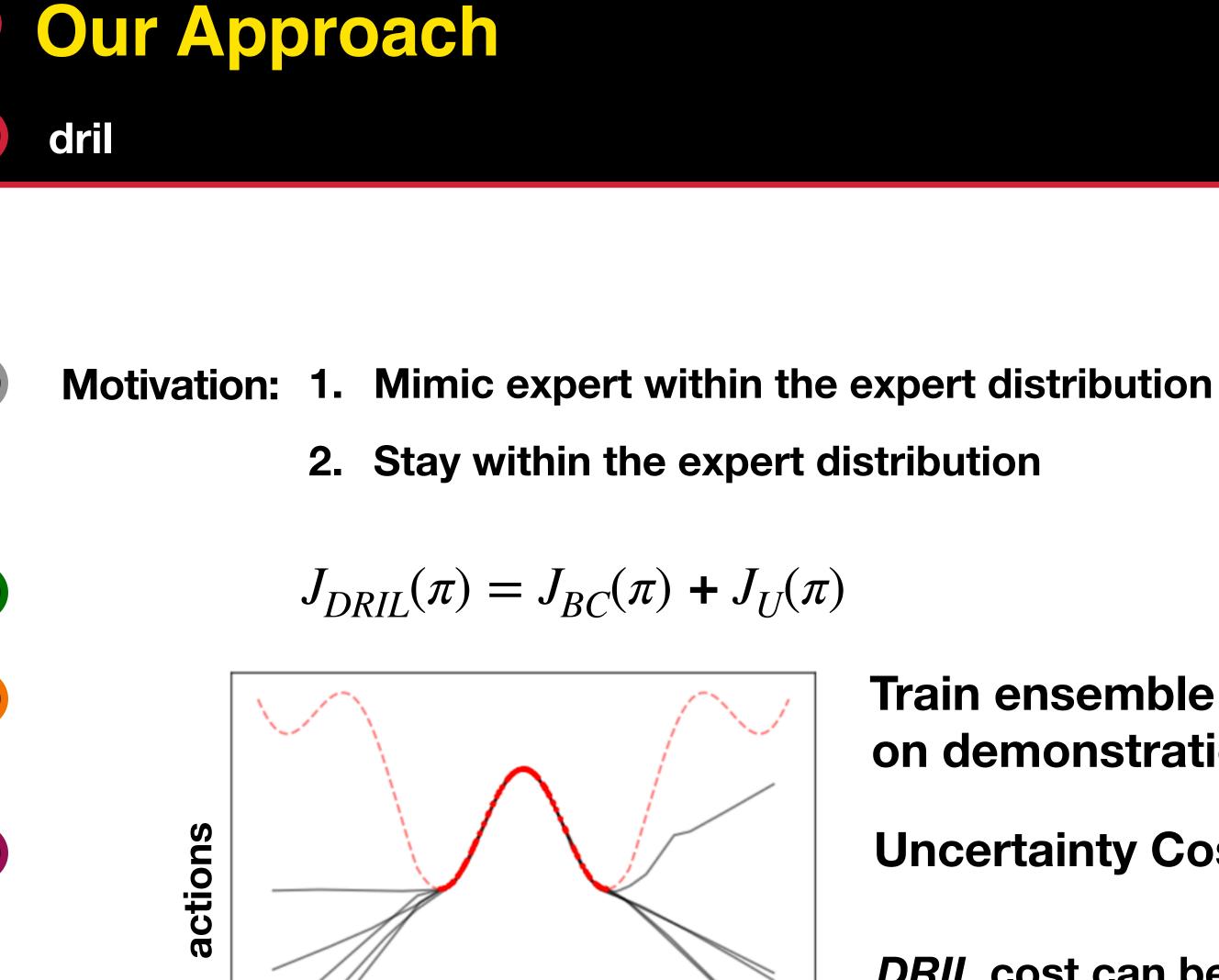
The assumptions underlying supervised learning no longer hold, resulting in a

ning	Behavior Cloning
)	$(s,a) \sim d_{\pi^*}$
)	$(s,a) \sim d_{\pi}$
)	$(s,a) \sim d_{\pi}$



[Efficient Reductions for Imitation Learning, Ross & Bagnell, AISTATS 2010] [Lower bounds for reductions, Matti Kääriäinen, Atomic Learning Workshop 2006]

Consider a policy: $\hat{\pi}$



DRIL cost can be optimized using any RL algorithm

Learned functions

--- True function

Training points

(different initializations)

- Train ensemble of polices $\Pi_E = \{\pi_1, \ldots, \pi_E\}$ on demonstration data D
- **Uncertainty Cost:** $C_{\rm U}(s,a) = {\rm Var}_{\pi \sim \Pi_{\rm F}}(\pi(a \mid s))$

Our Approach dril (final algorithm)

Input: **Expert Demonstration data** D

Policy Ensemble $\Pi_E = \{\pi_1, \ldots, \pi_E\}$ using demonstration data *D* Train:

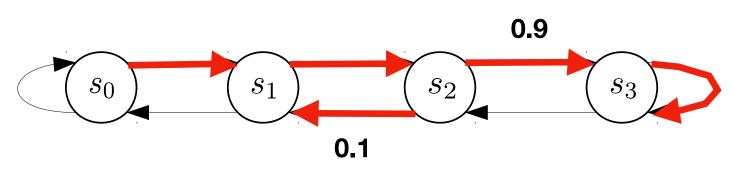
Policy behavior cloning π using demonstration data D Train:

for i = 1 to ... do

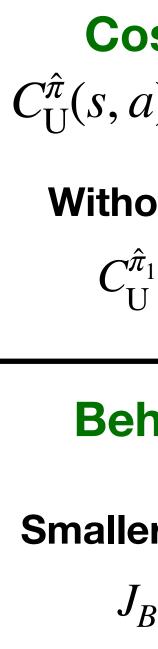
end for

$$O = \{(s_i, a_i)\}_{i=1}^N$$

- Perform one gradient update to minimze $J_{BC}(\pi)$ using a minibatch from D - Perform one step of policy gradient to minimize $\mathbf{E}_{s \sim d_{\pi}, a \sim \pi(\cdot|s)} [C_{\mathrm{U}}(s, a)]$



 $r(s_0) = 0$ $r(s_1) = 0$ $r(s_2) = 0$ $r(s_3) = 1$



Cost Function:

$$\mathbf{z} = \operatorname{Var}_{\pi \sim \Pi_{\mathrm{E}}}(\pi(a \,|\, s))$$

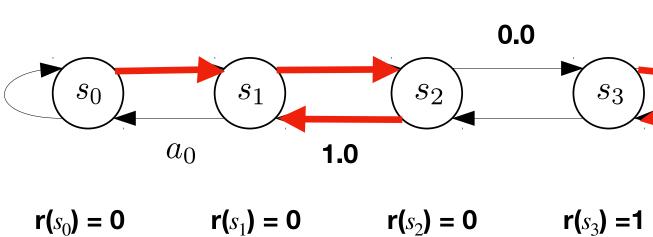
Without bootstrapping

 $C_{\mathrm{U}}^{\hat{\pi}_1}(s,a) \approx C_{\mathrm{U}}^{\hat{\pi}_2}(s,a)$

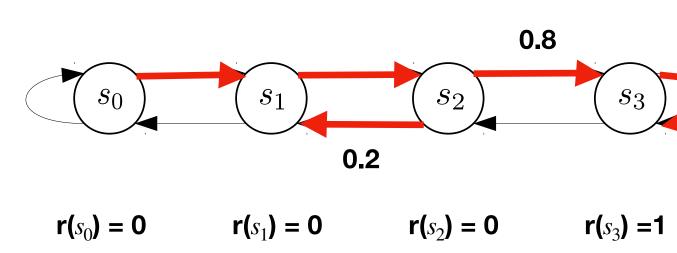
Behavior Cloning:

Smaller J_{BC} is closer to π^* $J_{BC}(\hat{\pi}_1) > J_{BC}(\hat{\pi}_2)$

Consider a policy: $\hat{\pi}_1$

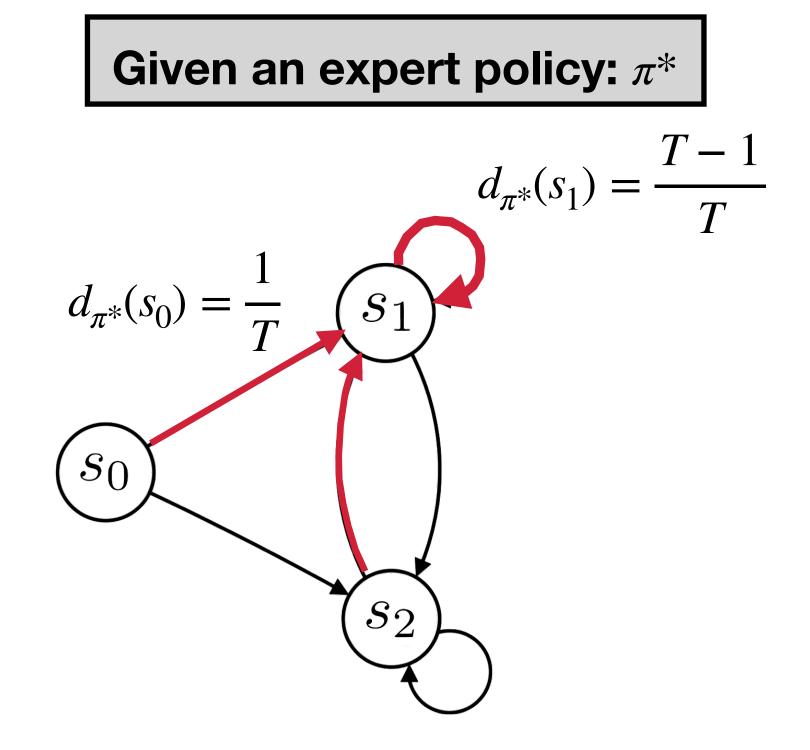


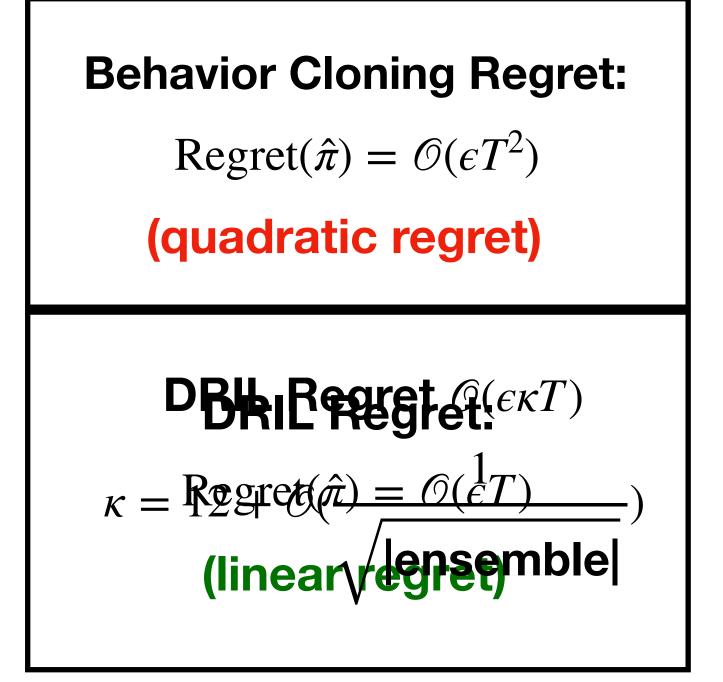
Consider a policy: $\hat{\pi}_2$

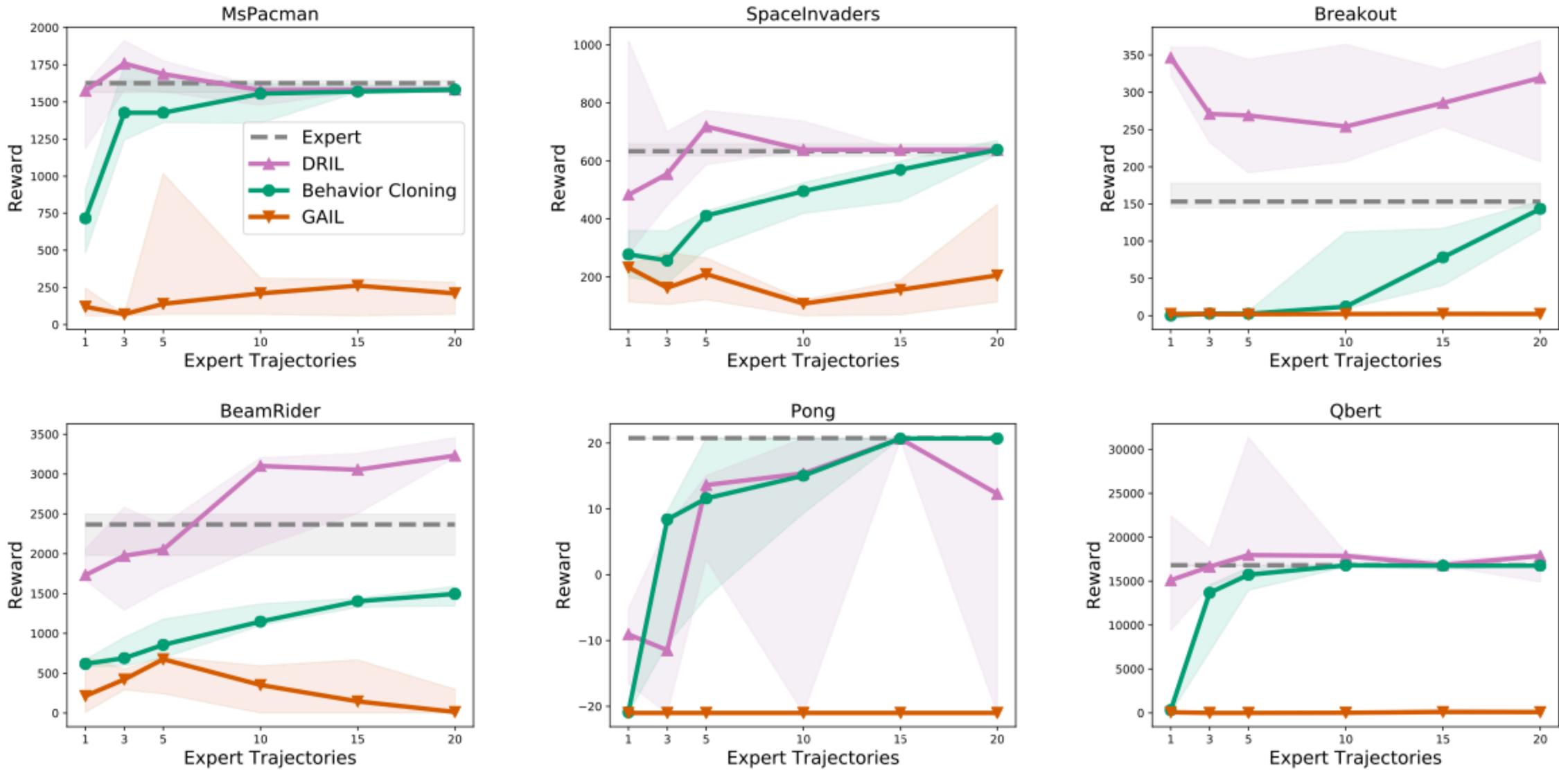


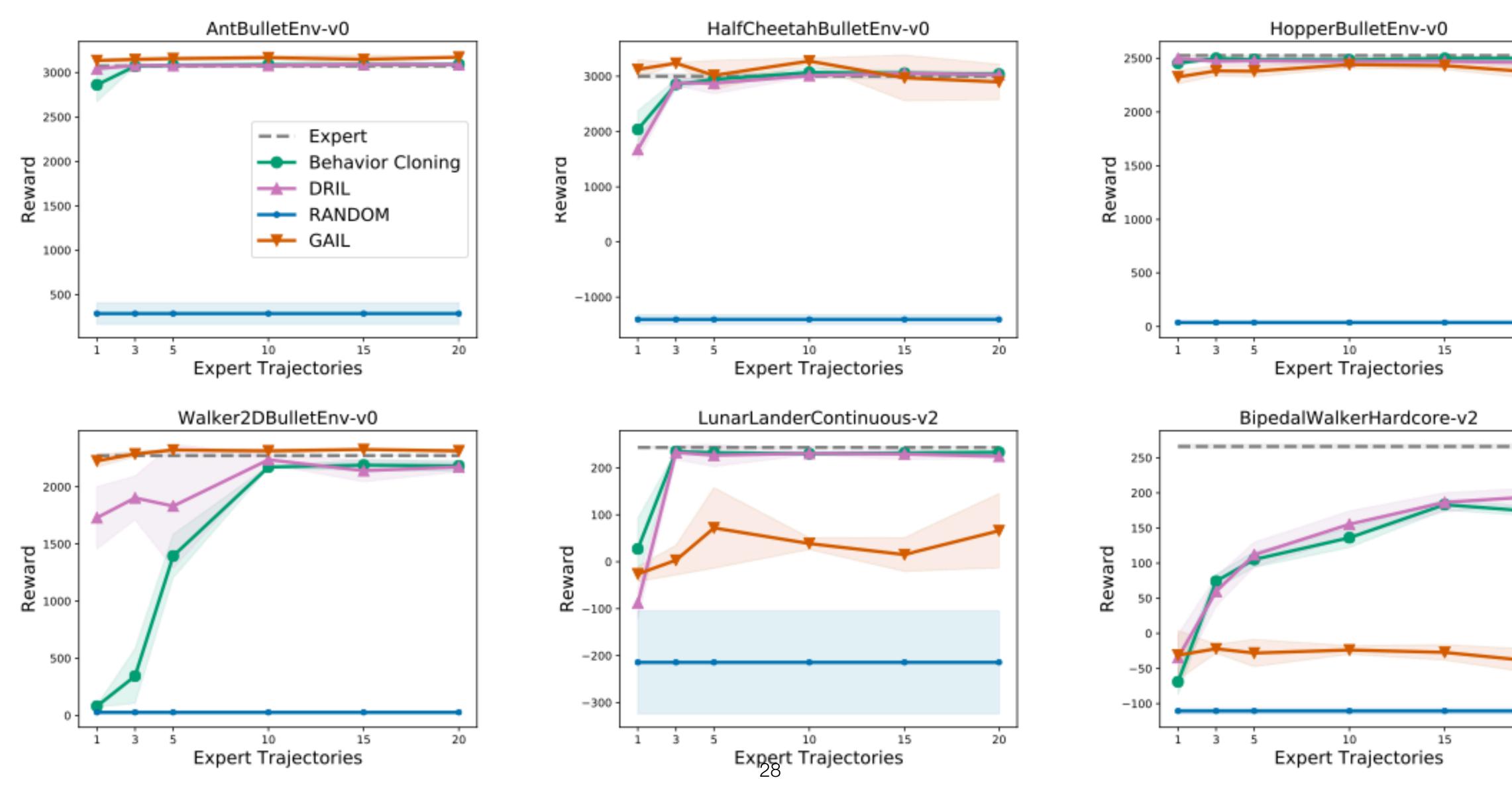
Assumption 1: (Realizability) $\pi^* \in \Pi$ **Assumption 2: (Optimization Oracle)** $J(\hat{\pi}) \leq \operatorname{argmin}_{\pi \in \Pi} J(\pi) + \epsilon$ Assumption 3: (Smoothness on true Q-Function) $Q^{\pi^*}(s, a) - Q^{\pi^*}(s, \pi^*) \le u$

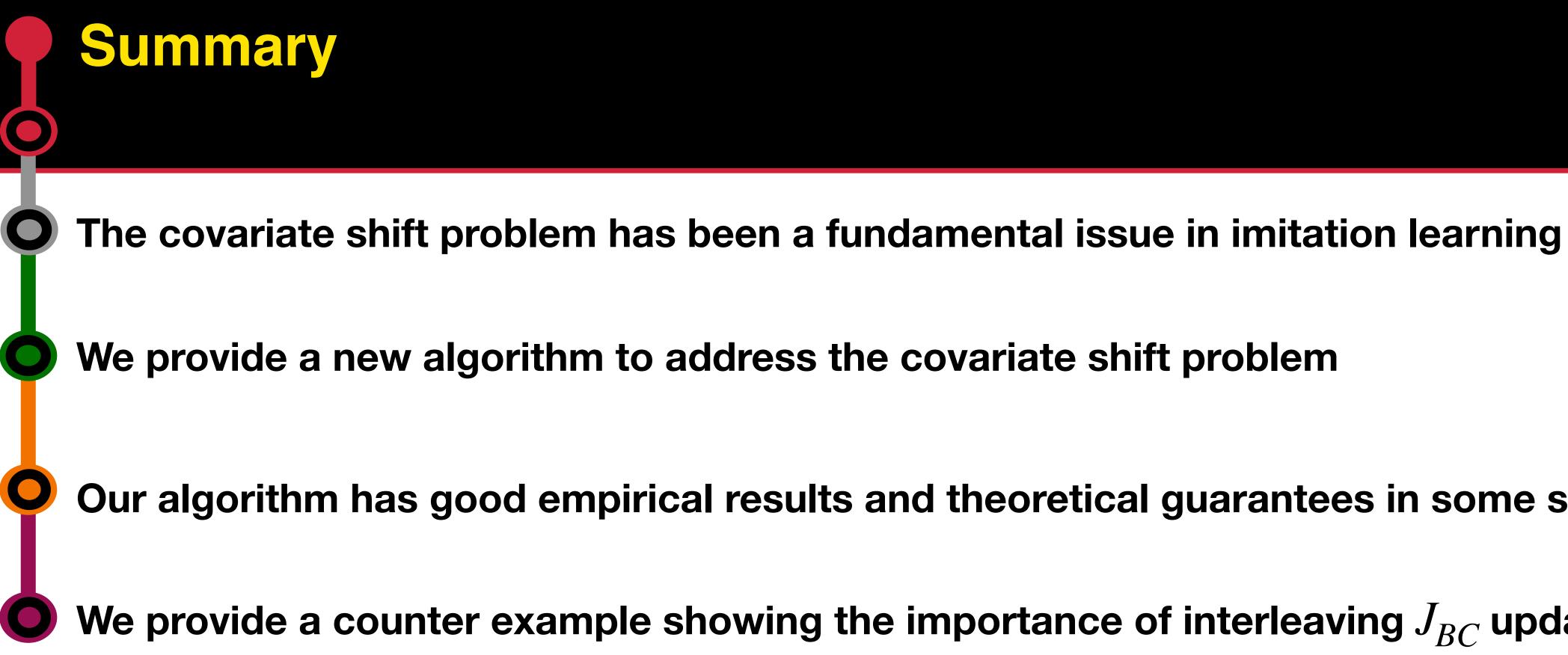
Theorem (informal): $J_{DRIL}(\pi)$ has regret $\mathcal{O}(\epsilon \kappa T)$



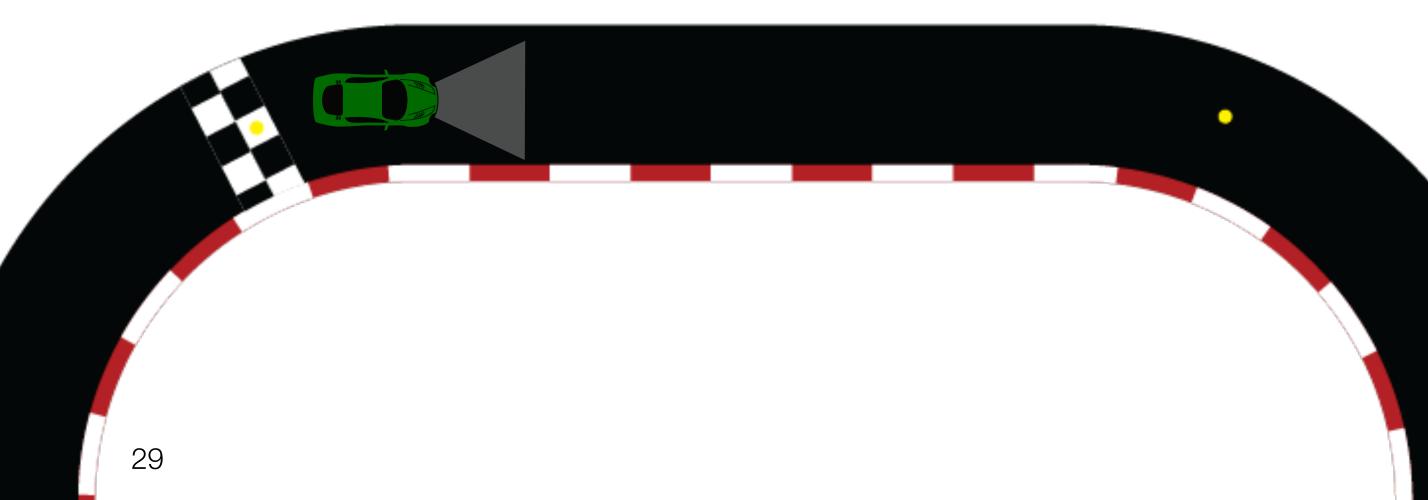








- Our algorithm has good empirical results and theoretical guarantees in some settings
- We provide a counter example showing the importance of interleaving J_{BC} updates



Talk Overview

Background

- Behavior Cloning
- Interactive Imitation Learning with Dagger (Ross et al. 2011)

Modern Imitatio

- Uncertainty
- An Empirica

Research Question:

Does performing behavior cloning updates help in similar style algorithms as DRIL?

An Empirical Study of Imitation Learning

Kianté Brantley¹ ¹ University of Maryland

Σ,

Motivation

large-scale structured-prediction for nlp

A Deep Reinforced Model For Abstractive Sun

 $L_{mixed} = \gamma L_{rl} + (1 - \gamma) L_{ml}$

.... optimizing increase in quality increase their sco readability or rele

Googles's Neural Machine Translation System the Gap between Human and Machine Transla

$$\mathcal{O}_{mixed}(\theta) = \alpha * \mathcal{O}_{ML} + \mathcal{O}_{RL}$$

Li et al. 2017

".... final training alternately update the ... using the adversarial objective and the MLE objective " Li et al. 2017

Deep reinforcement learning for dialogue gen

"for every sequence of length T we use the MLE loss for the first L tokens and the reinforcement algorithm for the remaining T – L tokens" Li et al. 2016

mmarization, Paulus et al. 201 ROUGE does not guarantee an ty output. It is possible to core without an actual increase in evance" Paulus et al. 2017		
		r(s,a) = ROUGE-L
n: Bridging, ation	Wu et al. 2018	Cited by 4842
tabilize training		r(s,a) = GLEU
		Cited by 807
stabilize traini	ing	r(s,a) = D(s,a) (similar to G
neration,	Li et al. 2016	Cited by 1039

following previous work

r(s,a) = Fixed pertained models

- state
- actions

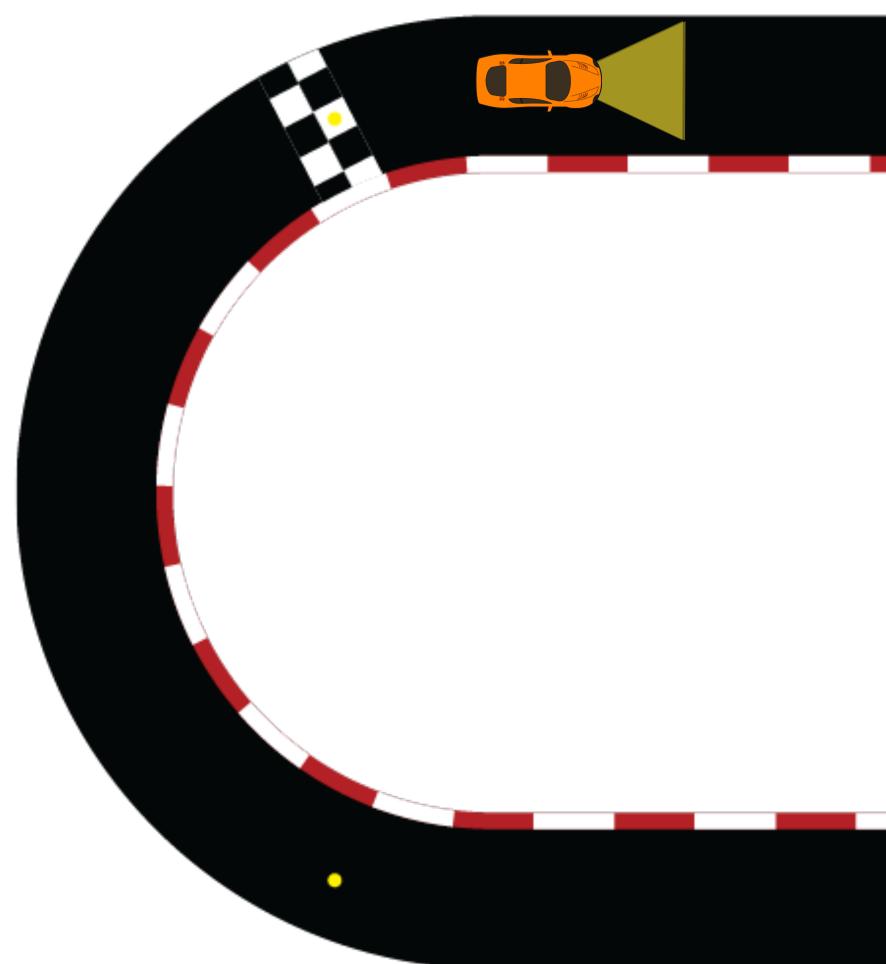
Training set:

D = {(state, actions)} from expert π^*

Goal:

learn reward function r(s, a) using D learn an agent π_{θ} by maximizing r(s, a) with RL

Note: These objectives studied in this paper are the dual of inverse reinforcement learning objectives



Modern Imitation Learning baselines Behavior Cloning (bc)

Modern Imitation Learning

baselines

Behavior Cloning (bc)

Lazy Learners

- k-nearest neighbor (knn)

Modern Imitation Learning

baselines

Behavior Cloning (bc)

Lazy Learners

- k-nearest neighbor (knn)
- Locally weighted Learning (IwI)

baselines

Behavior Cloning (bc)

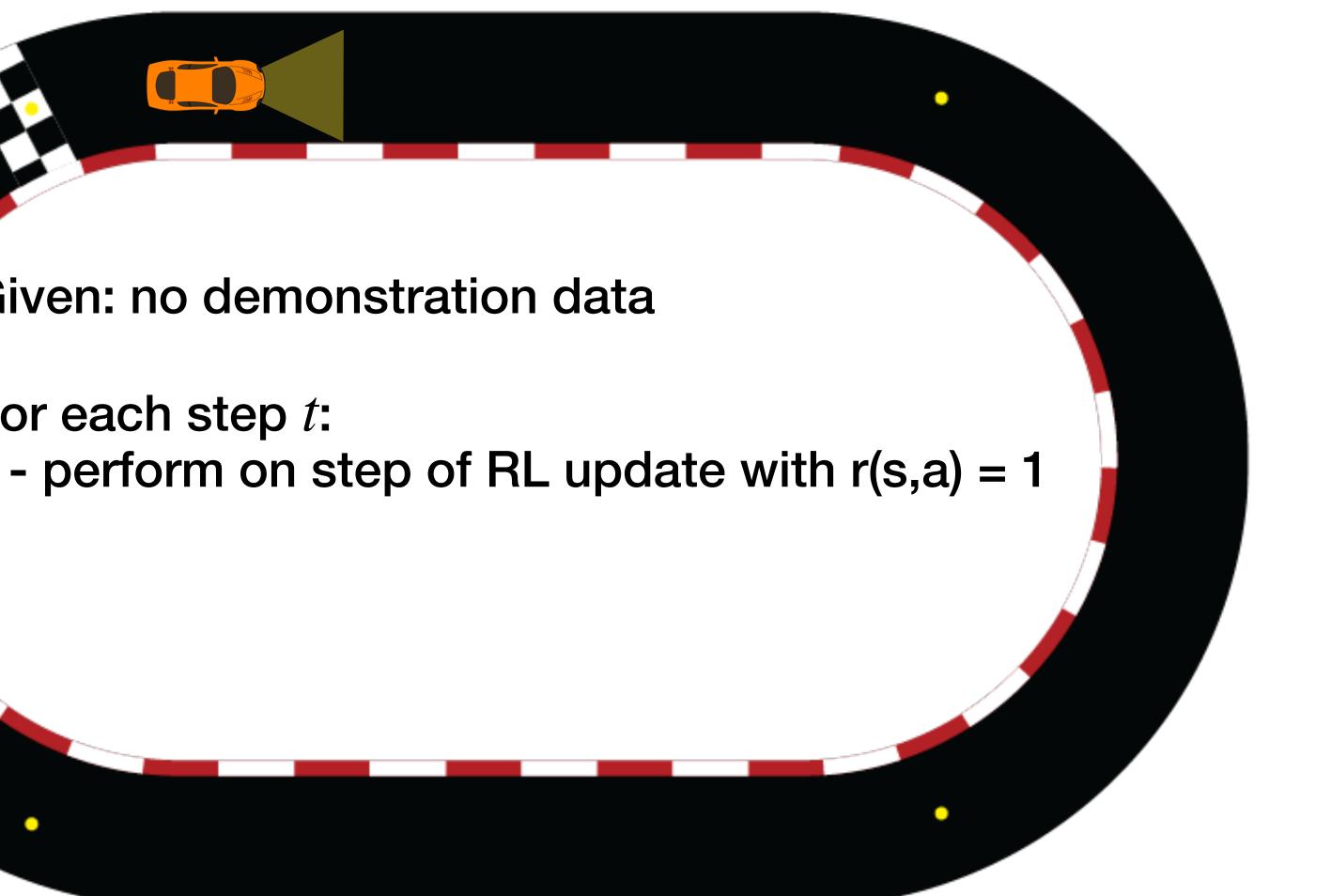
Lazy Learners

- k-nearest neighbor (knn)
- Locally weighted Learning (IwI)

Constant Reward (cr)

Given: no demonstration data

For each step *t*:



algorithms

General Adversarial Imitation Learning (gail)

Modern Imitation Learning general adversarial imitation learning (gail)

Given: training set **D** = {(state, actions)} from expert π^* Discriminator denoted as D_{ϕ}

Goal:

 $D_{ heta}$ π

 $\max_{\pi} \max_{D} \mathbb{E}_{\pi} \left[\log \left(D_{\theta}(s, a) \right) \right] + \mathbb{E}_{\pi^{*}} \left[\log \left(1 - D_{\theta}(s, a) \right) \right] - \lambda H(\pi)$

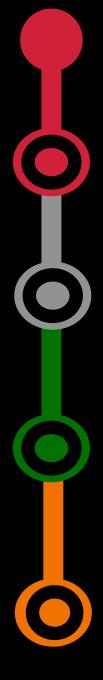
•

Modern Imitation Learning general adversarial imitation learning (gail)

Given: training set Discriminator denoted as D_{ϕ}

For each step *t*: - update D_{θ} with binary classifier - perform one RL update with $r(s,a) = -\log\left(D_{\theta}(s,a)\right)$

D = {(state, actions)} from expert π^*

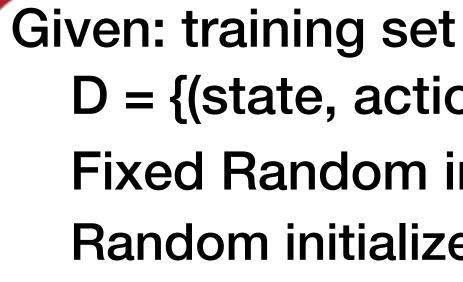


algorithms

General Adversarial Imitation Learning (gail)

Adversarial Imitation Learning (airl)

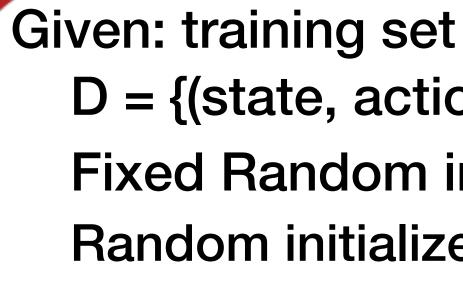
Random Expert Distillation (red)



Goal:

 $\min_{\hat{\theta}} \mathbb{E}_{\mathbf{D}} \left[\left\| f_{\hat{\theta}}(s,a) - f_{\theta}(s,a) \right\|_{2}^{2} \right]$

D = {(state, actions)} from expert π^* Fixed Random initialized network $f_{\theta}(s, a)$ Random initialized network $f_{\hat{\theta}}(s, a)$



For each step *t*: - perform one RL update with

- D = {(state, actions)} from expert π^* Fixed Random initialized network $f_{\theta}(s, a)$ Random initialized network $f_{\hat{\theta}}(s, a)$
 - $r(s, a) = -\left(||f_{\hat{\theta}}(s, a) f_{\theta}(s, a)||_{2}^{2} \right)$

algorithms

General Adversarial Imitation Learning (gail)

- RL updates

Adversarial Imitation Learning (airl)

- RL updates

Random Expert Distillation (red)

- RL updates

Disagreement-regularized imitation learning (dril)

- Interleave RL updates with BC updates
- Importance of interleaving BC updates

baselines

Behavior Cloning (bc)

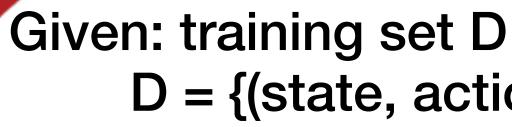
Lazy Learners

- k-nearest neighbor (knn)
- Locally weighted Learning (Iwl)

Constant Reward

- constant Reward (cr)
- behavior cloning -regularized constant Reward (bc-cr)

behavior cloning -regularized constant reward (bc-cr)



For each step *t*:

D = {(state, actions)} from expert π^*

- perform one RL update with r(s,a) = 1 - perform one BC update using D

algorithms

General Adversarial Imitation Learning (gail)

Adversarial Imitation Learning (airl)

Random Expert Distillation (red)

Disagreement-regularized imitation learning (dril)

Behavior Cloning - regularized General Adversarial Imitation Learning (bc-gail)

Behavior Cloning - regularized Adversarial Imitation Learning (bc-airl)

Behavior Cloning - regularized Random Expert Distillation (bc-red)

algorithms

Behavior Cloning (bc)

k-nearest neighbor (knn)

Locally weighted Learning (Iwl)

Constant reward (cr)

behavior cloning -regularized constant Reward (bc-cr)

General Adversarial Imitation Learning (gail)

Adversarial Imitation Learning (airl)

Random Expert Distillation (red)

Disagreement-regularized imitation learning (dril)

Behavior Cloning - regularized General Adversarial Imitation Learning (bc-gail)

Behavior Cloning -regularized Adversarial (bc-airl)

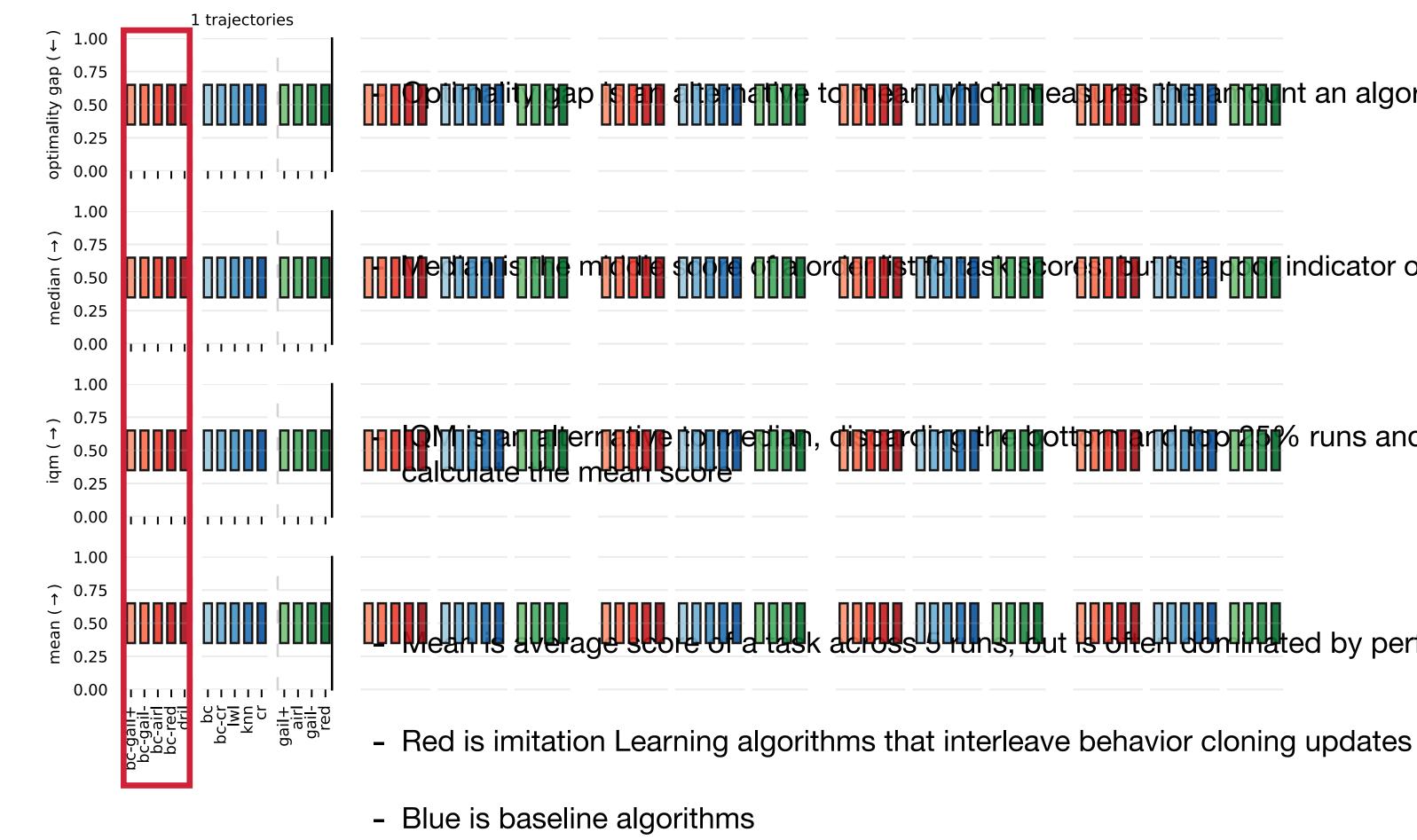
Behavior Cloning - regularized Random Expert Distillation (bc-red)

Task	Feature-Based
Toolkits	Mujoco, Pybullet
Trajectories	[1,2,3,5,10]
# Environments	25
# Seeds	5
# Experiments per task	(5*25*5) = 625
# Action Space	continuous
# Observation Space	state features
# Dyamics	deterministic

Pixel-Based	Structure-Prediction
DMC, Box2D [1,3,5,10]	NLPGYM entire dataset
6 5	5 5
(4*6*5)=120	(1*5*5)=25
continuous	discrete
pixels	word embeddings
deterministic	deterministic

Experiments

setup



[Deep Reinforcement Learning at the Edge of the Statistical Precipice, Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, Marc G. Bellemare]

Hopinality papies an alternative to mean which near use the arrount an algorithm fails to meet a minimum score of y

Hille and the middle some of porter ist in ask sores but is a poor indicator of overall performance

calculate the mean score

- Mean is average score of a task across 5 runs, but is often dominated by performance of outlier tasks

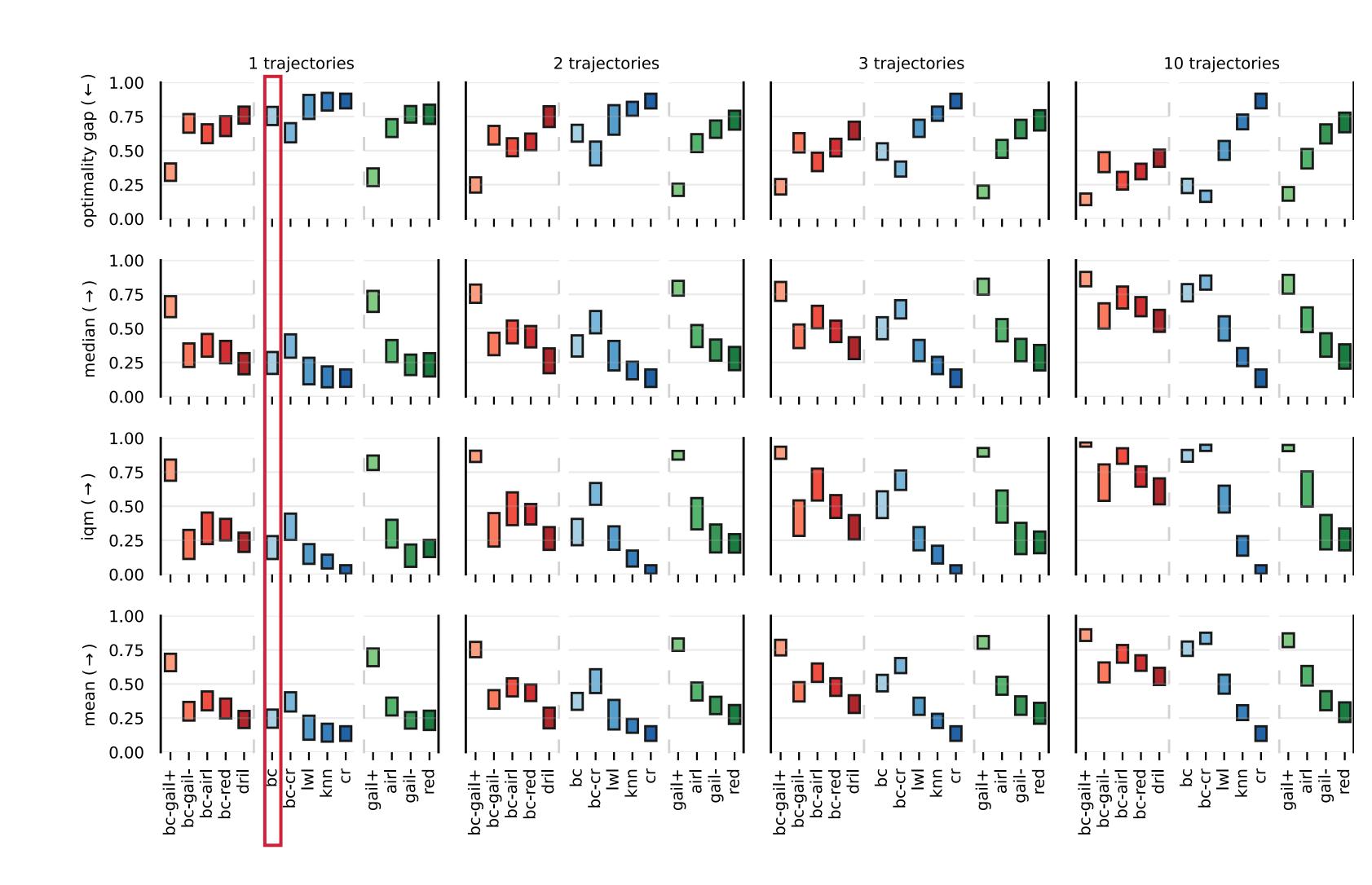
- Green is imitation Learning algorithms that *do not* interleave behavior cloning updates

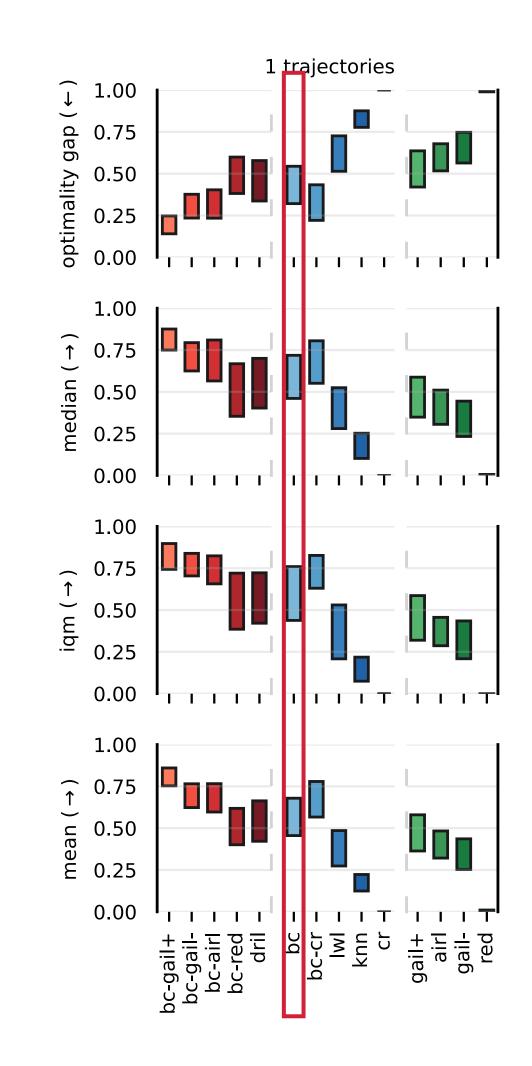
Note:

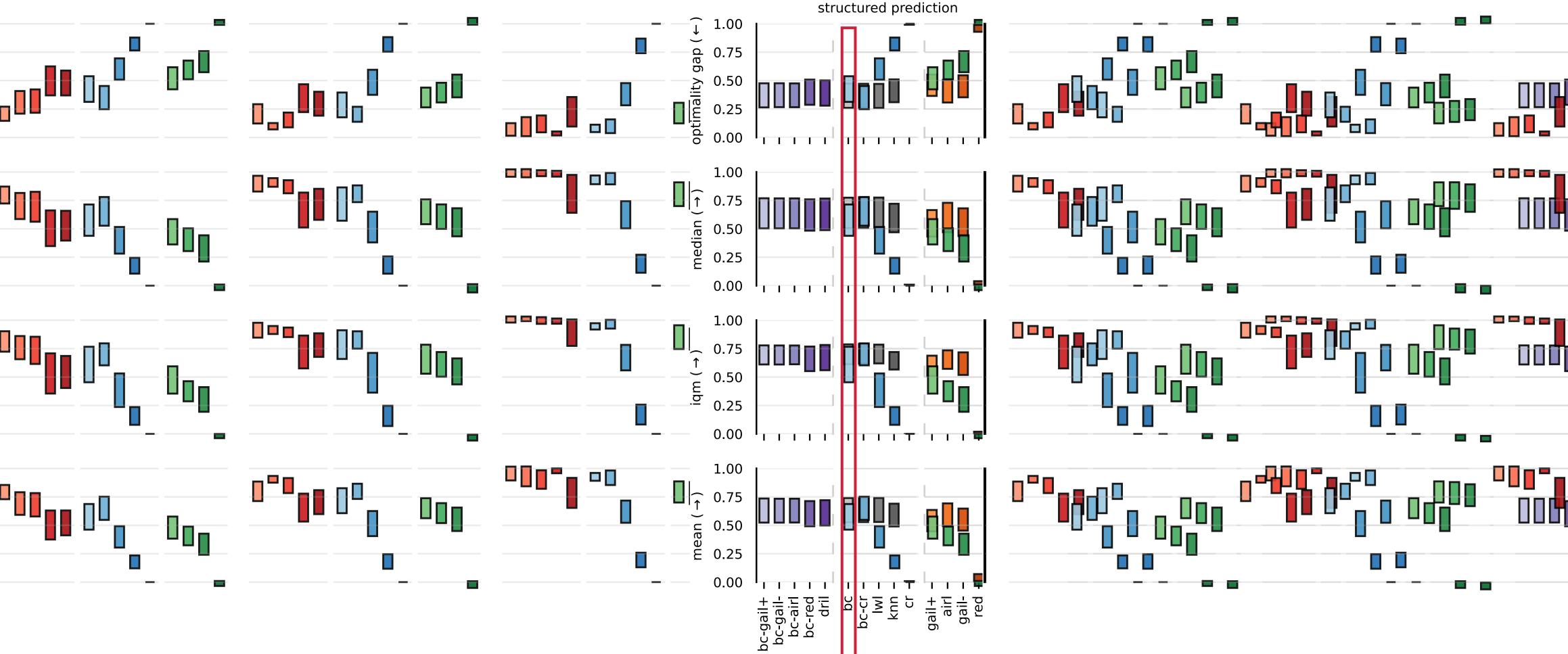
Practitioners artificially subsample states in trajectories to make behavior cloning perform worse, to create a gap between the performance of expert and behavior cloning.

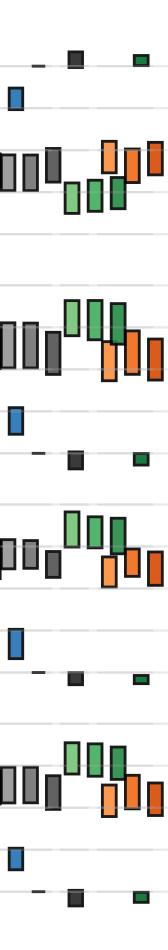
Experiments

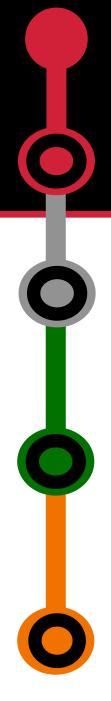
featured-based subsampled tasks











takeaways

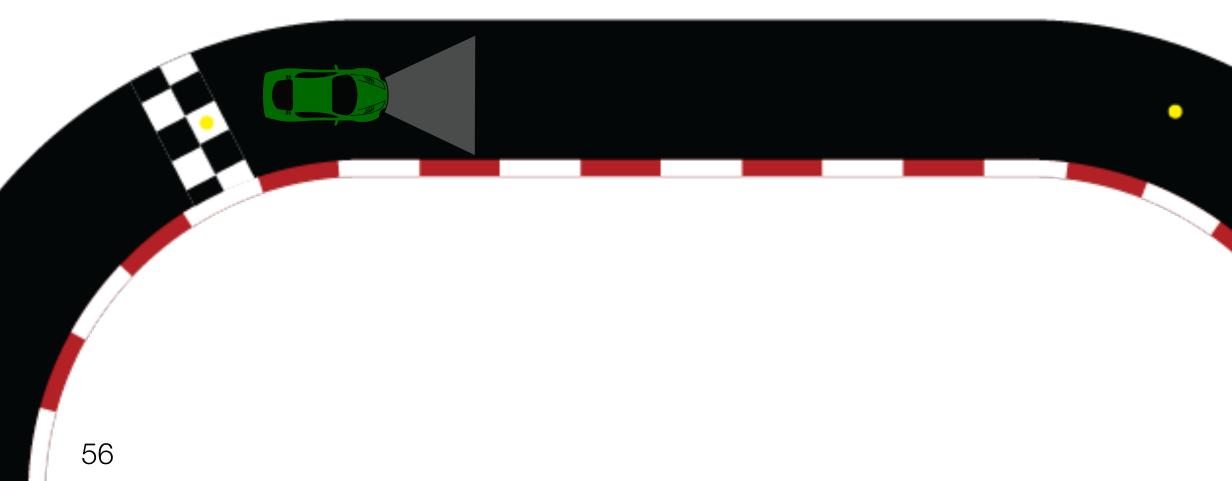
Behavior cloning is a very strong baseline

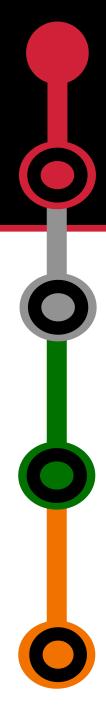
algorithm

prediction task

Interleaving behavior cloning updates improve performance agnostic of any task and any

Interleaving behavior cloning updates improve performance in modern nlp structured



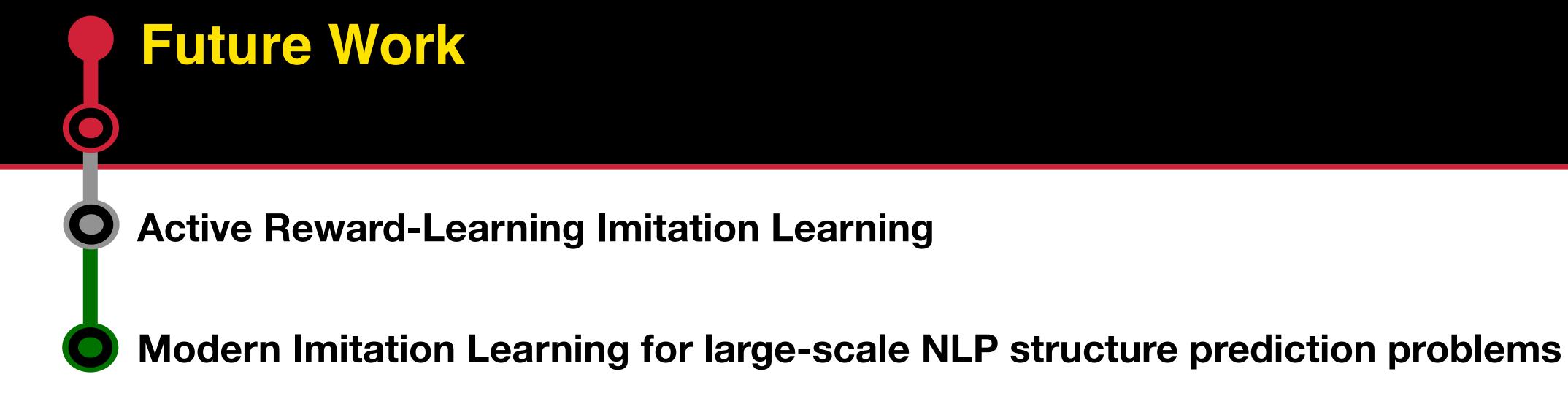


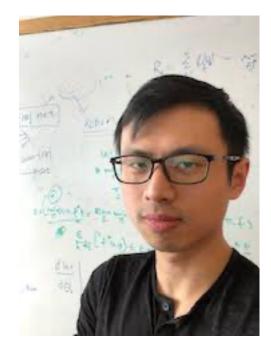
Summary

Studying issues that arise when solving sequential decision-making problems with expert demonstration data is important

We performed a thorough empirical comparison of all algorithms

We relate modern imitation learning algorithms to modern large-scale nlp structured prediction algorithms





Wen Sun

Mikael Henaff

Formalizing the Behavior Cloning Issue

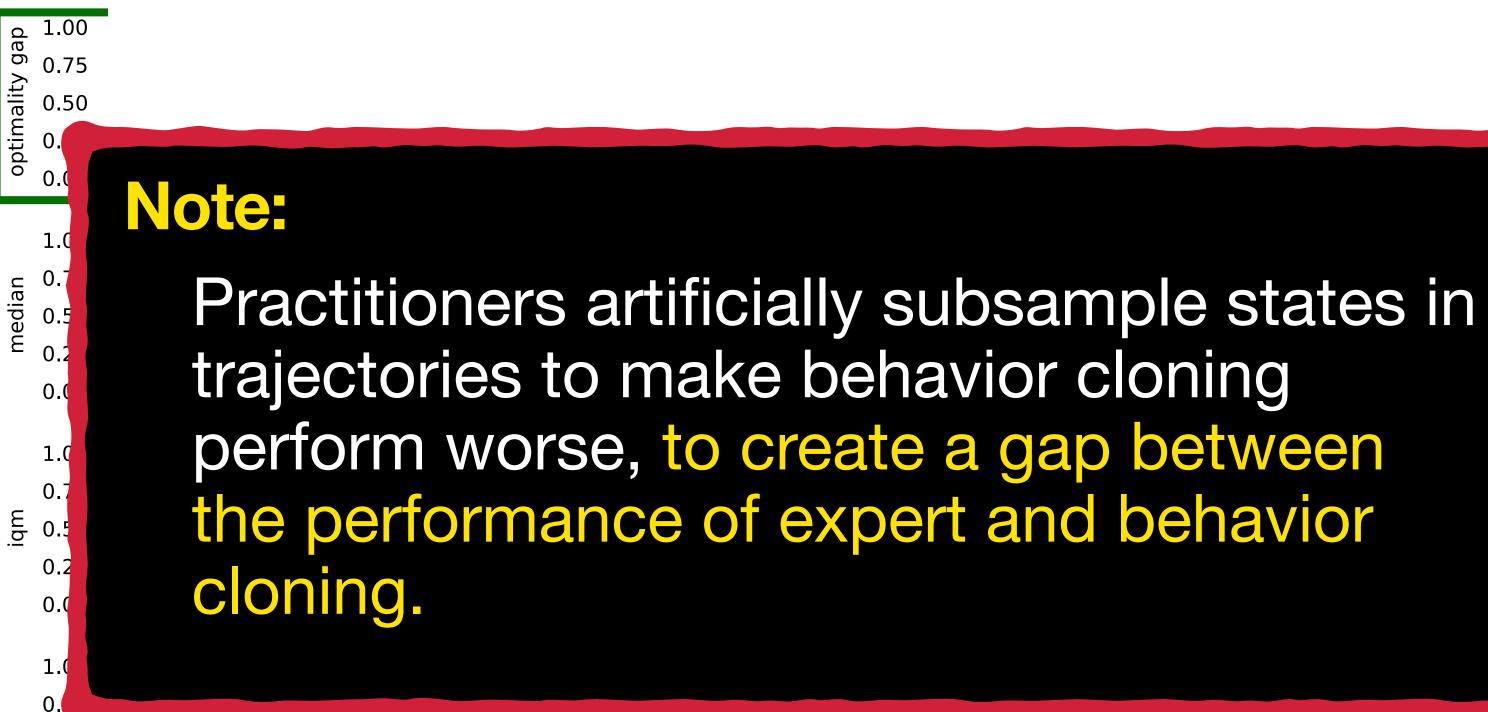


mean

0.50

0.25

0.00



Experiments

featured-based subsampled tasks

