Active Imitation Learning with Noisy Guidance

Kianté Brantley,¹ Amr Sharaf,¹ Hal Daumé III ^{1,2} ¹ University of Maryland, ² Microsoft Research

Structured Prediction Problems for example, Named Entity Recognition:

Word	Label	
After	Ο	
completing	Ο	
his	Ο	
Ph.D.	Ο	
,	Ο	

Structured Pred for example, Nam		Prob	lem:	
	Word		□ Can we design expert annotatio	
	After		predict	ion proble
	completing		0	
	his		Ο	
	Ph.D.		Ο	
	,		Ο	

an algorithm to reduce n cost for structure ems?

Expert Demonstrator: (Annotator)

Named Entity Recognition

- **Input: Prediction:**
- input combined with policy's previous prediction - states
- actions o, per, org, misc, loc
- training set: $D = \{(state, actions)\}$ from expert π^*
- learn policy $\pi_{\theta}(s) \rightarrow a$ goal:

After completing his Ph.D., Ellis worked at Bell Labs from 1969 to 1972 on probability theory.

Initialize Dataset DInitialize $\hat{\pi}_1$ for i = 1 to N do $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$ **Sample T-step trajector** Get dataset $D_i = \{(s, z)\}$ Aggregate dataset *D* Train classifier $\hat{\pi}_{i+1}$ o

Pro:

state distribution.

Stéphane Ross, Geoff J. Gordon, and J. Andrew Bag- nell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.

Initialize Dataset DInitialize $\hat{\pi}_1$ for i = 1 to N do $\pi_i = \beta_i \pi^* + (1 - \beta_i) \hat{\pi}_i$ **Sample T-step trajector** Get dataset $D_i = \{(s, z)\}$ Aggregate dataset *D* Train classifier $\hat{\pi}_{i+1}$ or

Con:

Stéphane Ross, Geoff J. Gordon, and J. Andrew Bag- nell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Al-Stats.

Active Learning with DAgger

Question: noulli variable

Train classifier $\hat{\pi}_{i+1}$ on D

Can reduce expert queries even further?

gnition

eting his Ph.D., Ellis worke

PE

s worke ER O

Our Approach: LeaQ (Learning to Query for Imitation)

- Key Ideas: We assume access to a noisy heuristic function
 - Use a disagreement classifier to decide if we should query the expert or the heuristic function
 - Train the disagreement classifier using the Apple **Tasting framework**

Named Entity Recognition Input: π

0

0

0

HeGazetteenction

One-Sided Feedback Learning

Experiment Details

Language

Dataset

Heuristic

Huer. Quality

NER	Keyphrase	POS
English	English	Modern Greel
CoNLL'03	SemEval 2017 Task 10	Universal Dependenci
Gazeteer	Unsupervised model	Dictionary Wiktionary
P88%, R27%	P20%, R44%	67% acc

Experiment Results

Active vs Passive

Q1

Q2

Heuristic as features vs Policy

Thank you!

